DirichletCircle.mw
Plate 1: Dirichlet Problem for a Circle
Maplesoft, a division of Waterloo Maple Inc., 2004
Warning, the name changecoords has been redefined
> |
setoptions3d(scaling=constrained, projection=0.5, style=patchnogrid); |
> |
f1:=(x, y)->0.5*sin(10*x*y): |
> |
f2:=t->f1(cos(t), sin(t)): |
> |
a0:=evalf(Int(f2(t), t=-Pi..Pi)/Pi): |
> |
a:=seq(evalf(Int(f2(t)*cos(n*t), t=-Pi..Pi)/Pi), n=1..50): |
> |
b:=seq(evalf(Int(f2(t)*sin(n*t), t=-Pi..Pi)/Pi), n=1..50): |
> |
L:=(r, s)->a0/2+sum('r^n*(a[n]*cos(n*s)+b[n]*sin(n*s))', 'n'=1..50): |
> |
q:=plot3d([r*cos(s), r*sin(s), L(r, s)], r=0..1, s=0..2*Pi, color=[L(r, s), -L(r, s), 0.2], grid=[29, 100], numpoints=5000): |
> |
p:=tubeplot([cos(t), sin(t), f2(t), t=-Pi..Pi, radius=0.015], tubepoints=70, numpoints=750): |
> |
display3d({q, p}, orientation=[3, 89], lightmodel=light3); |
![[Plot]](/view.aspx?SI=1383/DirichletCircle_1.gif)
To create a smoother result, try the following commands. This may take some time to produce a result
> |
q:=plot3d([r*cos(s), r*sin(s), L(r, s)], r=0..1, s=0..2*Pi, color=[L(r, s), -L(r, s), 0.2], grid=[29, 100], numpoints=10000): |
> |
p:=tubeplot([cos(t), sin(t), f2(t), t=-Pi..Pi, radius=0.015], tubepoints=70, numpoints=1500): |
> |
display3d({q, p}, orientation=[3, 89], lightmodel=light3); |
![[Plot]](/view.aspx?SI=1383/DirichletCircle_2.gif)