Topology Tools
Department of Mathematics , Faculty of Science,University of Benghazi
Taha Guma el turki
E-mail: taha1978_2002@yahoo.com
>
|
restart;
with(combinat):with(networks):with(plottools):
|
>
|
#(1)A procedure to check if a given collection over X is topology or not .
|
>
|
CheckTopology:=proc(X,T)
|
>
|
if `subset`(T,PowerSetof(X))=true then
|
>
|
CuT:={seq(O intersect T[i],i=1..nops(T)),seq(O union T[i],i=1..nops(T))};
|
>
|
evalb(CT=T);
if evalb(CT=T)=true then True ;
|
>
|
else "False this collection does not represent a topology";
fi;
else "False this collection is no a sub collection of the powerset";
fi;
|
>
|
#(2) A procedure to obtain a relative topology on a subset of X.
SubSpace:=proc(A,X,T)
if (`subset`(A,X) and `subset`(T,PowerSetof(X))and CheckTopology(X,T))=True then
map2(`intersect`,A,T);
else "False check your entries";
fi;
end:
|
>
|
#(3) A procedure to check if a given point is a boundary point or not.
|
>
|
CheckBoundary:=proc(x,A,X,T)
|
>
|
if (member(x,X)and`subset`(A,X)) then
|
>
|
if member(x,t) then O:= O union {t};
|
>
|
if (o intersect A )<> {} and (o intersect X minus A) <>{} then B:=B union {x};
|
>
|
if B={} then "It's not a boundary point of the given set";
|
>
|
#(4) A procedure to find all boundary points of a given Set.
|
>
|
BoundaryPoints:=proc(A,X,T)
|
>
|
if CheckBoundary(x,A,X,T)<>"It's not a boundary point of the given set" then CB:= CB union {x};
|
>
|
fi;
if CB={} then "The given set has no boundary points";else CB;
fi;
|
>
|
#(5) A procedure to check if a given point is interior point or not.
|
>
|
CheckInterior:=proc(x,A,X,T)
|
>
|
if(`member`(x,X) and `subset`(A,X) ) then
|
>
|
if `member`(x,O) then eO:=eO union {O};
|
>
|
if `subset`(o,A) then In:=In union {x};
|
>
|
if In={} then "It's not an interior point of the given set";
|
>
|
#(6) A procedure to find all interior points of a given set.
|
>
|
InteriorPoints:=proc(A,X,T)
|
>
|
if `subset`(A,X)=true then
|
>
|
if CheckInterior(x,A,X,T)<>"It's not an interior point of the given set" then ci:=ci union {x};
|
>
|
ci;
if ci={} then "The given set has no interior points"; else
ci;
fi;
|
>
|
#(7) A procedure to check if a given point is a closure point or not.
|
>
|
CheckClosure:=proc(x,A,X,T)
|
>
|
if `member`(x,X) and `subset`(A,X) then
|
>
|
if `member`(x,o) then co:=co union {o} ;else co:=co;
|
>
|
if c intersect A<>{} then cp:=cp union {x};
|
>
|
if cp={} then "It's not a closure point of the given set";
|
>
|
#(8) A procedure to find all closure points of a given set.
|
>
|
ClosurePoints:=proc(A,X,T)
|
>
|
if CheckClosure(x,A,X,T)<>"It's not a closure point of the given set" then C:=C union {x};
|
>
|
fi;
if C={} then "The given set has no closure points";else C;
fi;
C;
|
>
|
#(9)A procedure to check if a given point is an exterior point of a given subset or not.
|
>
|
CheckExterior:=proc(x,A,X,T)
|
>
|
if (member(x,X)and`subset`(A,X)) then
|
>
|
if `member`(x,O) and `subset`(O,CX) then ex:=ex union {x};
|
>
|
if ex={} then "It's not an exterior point of the given set " ;
|
>
|
#(10) A procedure to find all exterior points of a given subset.
|
>
|
ExteriorPoints:=proc(A,X,T)
|
>
|
if CheckExterior(x,A,X,T)<>"It's not an exterior point of the given set " then ext:=ext union {x};
|
>
|
ext;
if ext={} then"The given set has no exterior points";
else ext;fi;
else false;
fi;
|
>
|
#(11) A procedure to check if a given point is a limit point or not.
|
>
|
CheckLimit:=proc(x,A,X,T)
|
>
|
if member(x,X)= true then
|
>
|
if (member(x,T[i]))then O:= O union {T[i]};
|
>
|
Omx:={seq(O[i] minus {x},i=1..nops(O))};
|
>
|
if ((o intersect A) <> {}) then L:=L union {x};
|
>
|
if L={} then "It's not a limit point of the given set ";else
|
>
|
#(12)A procedure to find all limit points of a given set of X.
|
>
|
LimitPoints:=proc(A,X,T)
|
>
|
if `subset`(A,X)=true then
|
>
|
if CheckLimit(x,A,X,T) <> "It's not a limit point of the given set " then LI:=LI union {x};
|
>
|
LI;
if LI={} then "The given set has no limit points";else LI;
fi;
|
>
|
end:
#(13)A procedure to check if a given point is isolated point or not.
|
>
|
CheckIsolated:=proc(x,A,X,T)
|
>
|
if (member(x,X)and`subset`(A,X) and `subset`(T,PowerSetof(X))) then
|
>
|
if o intersect A ={x} then iso:=iso union {x};break;
|
>
|
if iso={} then "It's not an isolated point of the given set"; else
|
>
|
#(14) A procedure to find all isolated points of a given subset.
|
>
|
IsolatedPoints:=proc(A,X,T)
|
>
|
if CheckIsolated(x,A,X,T)<>"It's not an isolated point of the given set" then
|
>
|
isol;
if isol={} then "The given set has no isolated points";else isol;
fi;
|
>
|
#(15)A procedure to find the closed sets of the topology.
|
>
|
{seq(X minus T[i],i=1..nops(T))};
|
>
|
#(16)A procedure to find the clopen sets of the topology.
|
>
|
if `member`(X minus A,T)=true then W:=W union {A};
else W:=W;
fi;
|
>
|
end:
#(17)A procedure to find the neither open nor closed setes in a given topology.
NeitherOpenNorClosedSets:=proc(X,T)
local A,B,C;
if CheckTopology(X,T)=True then
A:=PowerSetof(X) minus T;
A;
B:=A minus ClosedSets(X,T);
B;
C:=B minus ClopenSets(X,T);
C;
else "Please check your entries!!!";fi;
if C={} then "There are no neither open nor closed sets of the given space";
else; C;
fi;
end:
|
>
|
#(18)A procedure to check if a given topology is T0 or not.
|
>
|
if nops(X)=1 then print("True") ;else
|
>
|
test:=evalb((member(x,O)and not(member(y,O)))or (member(y,O) and not(member(x,O))));
|
>
|
if test then break; fi;
|
>
|
if not(test) then break;fi;
|
>
|
if not(test) then break;fi;
|
>
|
#(19)A procedure to find all topologies over a given set.
|
>
|
for T in CollectionsUnionEmptyandFullSet(X) do
|
>
|
if CheckTopology(X,T)=True then ALLTOPO:=ALLTOPO union {T};else
|
>
|
#(20)A procedure to find the number of topologies over a given set.
NumberofTopologies:=proc(X)
|
>
|
print("There are",nops(AllTopologies(X)),"topologies over a set with",nops(X),"points");
|
>
|
#(21) A procedure to find all T0 topologies over a given set.
|
>
|
AllT0Topologies:=proc(X)
|
>
|
if nops(X)=1 then T0S:=AllTopologies(X);else
|
>
|
for T in AllTopologies(X) do
|
>
|
if CheckT0(X,T)=true then T0S:= T0S union {T} ; else T0S:=T0S;
|
>
|
#(22)A procedure to find the number of T0 topologies over a given set.
|
>
|
NumberofT0Topologies:=proc(X)
|
>
|
print("There are",nops(AllT0Topologies(X))," T0 topologies over a set with",nops(X),"points");
|
>
|
#(23)A procedure to generate a topology from a given subbasis S.
|
>
|
GenerateTopologybySubBasis:=proc(X,S)
|
>
|
GT1:={seq(O intersect S[i],i=1..nops(S))} ; B:=B union GT1;
|
>
|
GT2:={seq(O union B[i],i=1..nops(B))};
|
>
|
#(24) A procedure to find the minimal basic open set for a certain point x.
|
>
|
MinimalBasic:= proc(x,X,T)
|
>
|
if (member(x,X) and CheckTopology(X,T)=True) then
|
>
|
if member(x,O)then COUNT:=COUNT union {O};
|
>
|
end:
#(25) A procedure to find the minimal basis of a given topological space.
|
>
|
MinimalBasis:=proc(X,T)
|
>
|
if `subset`(T,PowerSetof(X))then
|
>
|
minimalbasis:=minimalbasis union {MinimalBasic(x,X,T)};
|
>
|
else print("Check the colllection !!");
|
>
|
end:
#(26)A procedure to close a given set under unions needed in other procedure.
|
>
|
U:=U union map(`union`,U,A);
|
>
|
if U=T then U; else CloseUnions(U); fi;
|
>
|
#(27)A procedure to close agiven set under intersections needed in other procedure.
|
>
|
CloseIntersections:=proc(T)
|
>
|
U:=U union map(`intersect`,U,A);
|
>
|
if U=T then U; else CloseIntersections(U); fi;
|
>
|
#(28)A procedure to check that if the topology is connected.
|
>
|
CheckConnected:=proc(X,T)
|
>
|
evalb(ClopenSets(X,T)={X,{}});
end:
|
>
|
#(29)A procedure to find all connected topologies over a given set.
AllConnectedSpaces:=proc(X)
local C,c;
C:={};
AllTopologies(X);
for c in AllTopologies(X) do
if CheckConnected(X,c)=true then C:= C union {c};
else;
C:=C;
fi;
od;
C;
end:
#(30)A procedure to find the number of connected spaces over a given set.
NumberofConnectedSpaces:=proc(X)
print(`There are`,nops(AllConnectedSpaces(X)),`connected spaces over a set with`,nops(X),`points`);
end:
|
>
|
#(31) A procedure to find the connected components of a given point.
|
>
|
ConnectedComponents:=proc(x,X,T)
|
>
|
S:=map2(`union`,{x},powerset(X));
|
>
|
if CheckConnected(S[i],SubSpace(S[i],X,T)) then SK:=SK union S[i];fi;
|
>
|
end:
#(32) A procedure to find all connected components of a given space.
AllConnectedComponentsTopology:=proc(X,T)
local x,CC;
CC:={};
for x in X do
CC:=CC union {ConnectedComponents(x,X,T)};
od;
CC;
end:
#(33)A procedure to check if a Topology is Totaly Disconnected.
|
>
|
CheckTotalyDisconnected:=proc(X,T)
|
>
|
local i;
if CheckTopology(X,T)=True then
|
>
|
if not(ConnectedComponents(X[i],X,T)={X[i]}) then RETURN(false)fi;
|
>
|
RETURN(true);
else "Please check your enteries!!!";fi;
|
>
|
#(34) A procedure to find all totaly disconnected space over a given set.
AllTotalyDisconnected:=proc(X)
local o,T;T:={};
AllTopologies(X);
for o in AllTopologies(X) do
if CheckTotalyDisconnected(X,o)=true then T:=T union {o};else
T:=T;
fi;
od;
end:
#(35) A procedure to find the number of totaly disconnected spaces over a given set.
NumberofTotalyDisconnectedSpaces:=proc(X)
AllTotalyDisconnected(X);
print(`There are`,nops(AllTotalyDisconnected(X )),`over a set with `,nops(X),`points`);
end:
|
>
|
#(36)A procedure to find all disconnected spces over a given set.
AllDisconnectedSpaces:=proc(X)
AllTopologies(X) minus AllConnectedSpaces(X);
end:
#(37)A procedure to find the number of disconnected spaces over a given set given set.
NumberofDisconnectedSpaces:=proc(X)
print(`There are`,nops(AllDisconnectedSpaces(X)),`disconnected spaces over a set with`,nops(X),`points`);
end:
#(38)A procedure to check if a given topology is weakly-dimensional or not.
CheckWeaklyDimensional:=proc(X,T)
if CheckTopology(X,T)=True then
evalb(GenerateTopologybySubBasis(X,ClopenSets(X,T))=T)
else "Please Check your entries";
fi;
end:
#(39)A procedure to find all waekaly-dimensional topology over a given set.
AllWeaklyDimensionalSpaces:=proc(X)
local W,o;
W:={};
AllTopologies(X);
for o in AllTopologies(X)do
if CheckWeaklyDimensional(X,o)=true
then W:=W union {o};
else W:=W;
fi;
od;
end:
#(40)A procedure to find the number of weakaly-dimensional topologies over a given set.
NumberofWeaklyDimensionalSpaces:=proc(X)
print(`There are`,nops(AllWeaklyDimensionalSpaces(X)),`weakly-dimensional topologies over a set with`,nops(X),`points`);
end:
|
>
|
#(41) A procedure to Generate Extremal Topology Over X by x,y.
|
>
|
GenerateExtremalTopology:=proc(x,y,X)
|
>
|
local o,c,t,e,px,py,M,txy;
|
>
|
if `member`(x,X) and `member`(y,X) and x<>y then
|
>
|
px:=PowerSetof(X minus {x});
|
>
|
#(42)A proceure to find all extremal topologies over a finite set X.
AllExtremalTopologies:=proc(n)
|
>
|
for y in X minus {x} do
|
>
|
EX:=EX union {GenerateExtremalTopology(x,y,X)};
|
>
|
end:
#(43)A Procdure to Find the Number of Extremal Topologies Over a Set with n Points.
|
>
|
NumberofExtremalTopologies:=proc(n)
|
>
|
print("There are ",nops(AllExtremalTopologies(n)),"extremal topologies over a set with",n,"points");
|
>
|
#(44) A procdure to find the Non-Trivial Minimal Topologies Over a Set with n Points.
AllNonTrivialMinimalTopologies:=proc(n)
|
>
|
#(45) A Procdure to Find the Number of Non-Trivial Minimal Topologies Over a Set with n Points.
NumberofNonTrivialMinimalTopologies:=proc(n)
|
>
|
print("There are",nops(AllNonTrivialMinimalTopologies(n)),"non trivial minimal topologies over a set with",n,"oints");
|
>
|
#(46)A Procdure to Find the Number of Open set in Generated Extremal Topologies.
|
>
|
NumberofOpenSetsExtremal:=proc(x,y,X)
|
>
|
print("Number of open setes is",nops(GenerateExtremalTopology(x,y,X)));
|
>
|
#(47) A procedure to find the Cartesian product between two given sets.
|
>
|
P:=cartprod([seq([op(PX[i])],i=1..nops(PX))]);
|
>
|
while not P[finished] do C:=C union{P[nextvalue]()}od;
|
>
|
end:
#(48)A procedure to Implementation of the inverse projections, this is needed in later procedures.
|
>
|
InverseProj:=proc(k,S,PX)
|
>
|
if i=k then O[i]:=S else O[i]:=PX[i] fi;
|
>
|
Expandcart([seq(O[i],i=1..nops(PX))]);
|
>
|
#(49) A procedure to find subbasis for product topology using inverse projections.
|
>
|
ProductBase:=proc(PX,PS)
|
>
|
for i to nops(PS[k]) do
|
>
|
S:=S union {InverseProj(k,PS[k][i],PX)};
|
>
|
end:
#(50) A procedure to give alist of sets and alist of topologis,the product topology is found?.
|
>
|
ProductTopology:=proc(PX,PT)
|
>
|
GenerateTopologybySubBasis(Expandcart(PX),ProductBase(PX,PT));
|
>
|
#(51)A procedure to plot Hass digram over a given space.
|
>
|
local a,b,G,os,i,j,lorder,P,L,T,k,tl,dincl;
|
>
|
if A=B then RETURN(false) fi;
|
>
|
if not `subset`(A,B)then RETURN(false) fi;
|
>
|
for C in S minus {A,B} do
|
>
|
if `subset`(A,C)and `subset`(C,B)then RETURN(false) fi;
|
>
|
lorder:=proc(a,b)evalb(nops(a)<nops(b))end :
|
>
|
os:=sort([op(S)],lorder);
|
>
|
addvertex({seq(i,i=1..nops(S))},G);
|
>
|
if dincl(os[i],os[j],S)then addedge([i,j],G)fi;
|
>
|
if nops(os[i])=k then T:=T union {i};
|
>
|
P:=draw(Linear(seq([op(L[i])],i=1..tl)),G);
|
>
|
#(52)A procedure to finid the power set.
|
>
|
#(53)A procedure to find all proper sets over a given set.
|
>
|
ProperSubsetsof:=proc(X)
|
>
|
Z:=PowerSetof(X) minus{{},X};
|
>
|
#(54)A procedure to find proper sets collections over a given set.
|
>
|
CollectionsbyProperSubsets:=proc(X)
|
>
|
W:=PowerSetof(ProperSubsetsof(X));
|
>
|
#(55)A procedure proper sets collections over a given set union {{},Full Set}.
|
>
|
CollectionsUnionEmptyandFullSet:=proc(X)
|
>
|
{seq(w union{{},X},w=CollectionsbyProperSubsets(X))};
|
>
|
end:
#(56) A procedure to apply a permutation p of the elements of a space to the sets in a topology t is needed in later preocedure.
newjob:=proc(t,p)
local u:
{seq(subs({seq(X[i]=p[i],i=1..nops(X))} ,u) ,u=t)}:
end:
#(57)A procedure to compare sizes between a given topologies is needed in the following topology.
bigger:=proc(t1,t2)
if nops(t1) < nops(t2) then true else false fi:
end:
#(58) A procedure to Check if two topologies are homeomoprhic or not.
IsHomeomorphic:=proc(t1,t2,X)
local answer, P,p;
if (CheckTopology(X,t1)="False this collection does not represent a topology" or CheckTopology(X,t2)="False this collection does not represent a topology" or not`subset`(t1,PowerSetof(X)) or not`subset`(t2,PowerSetof(X))) then "There are some mistaiks in your inputs please check it!"; else
p:=permute(X);
#we can first check for some trivial invariants, such as.
if nops(t1) <> nops(t2) then return(false) fi:
answer:=false:
for p in P do
if {op(newjob(t1,p))}={op(t2)} then answer:=true: break: fi:od:
#Note that we have to compare _sets_ rather than _lists_!.
answer:
fi;
end:
#(59)A procedure to find the proper disjoint closed sets.
DisjointProperClosedSets:=proc(X,T)
local c,p,o,SC,CC;
SC:={};
CC:=ClosedSets(X,T) minus {{},X};
for c in CC do
for p in CC minus c do
if c intersect p ={} then SC:=SC union {c,p};
else SC:=SC;
fi;
od;od;
SC;
end:
#(60)A procedure to find the disjoint proper open sets of a given topological space.
DisjointProperOpenSets:=proc(X,T)
local o,m,D,PO;
D:={};
PO:=T minus {{},X};
for o in PO do
for m in PO minus {o} do
if o intersect m ={} then D:=D union {o,m};else D:=D;
fi;od;od;
D;
end:
#(61) A procedure to find disoint closed sets in pairs {,}.
DisjointClosedinPairs:=proc(X,T)
local f,c,C,M;
C:={};
M:=ClosedSets(X,T)minus {{}};
for f in M do
for c in M minus {f} do
if c intersect f={} then C:=C union {{c,f}};
else C:=C;
fi;
od;
od;
C;
end:
#(62) A procedure to check if a given space is normal or not.
CheckNormal:=proc(X,T)
local o,p,c,s,F;
F:={};
if nops(T)=2 or nops(T)=3 or DisjointClosedinPairs(X,T)={} then true;
else
for o in DisjointProperOpenSets(X,T) do
for c in DisjointProperClosedSets(X,T) do
for p in DisjointProperOpenSets(X,T) minus {o} do
for s in DisjointProperClosedSets(X,T) minus {c} do
if`subset`(c,o)and `subset`(s,p) then F:=((F union {o})union {p});
else F:=F;
fi;
od;
od;
od;
od;
F;
if F={}then false; else true;
fi;
fi;
end:
#(63)A procedure to find all Normal spaces over a given set.
AllNormalSpaces:=proc(X)
local o,N;
N:={};
AllTopologies(X);
for o in AllTopologies(X) do
if CheckNormal(X,o)=true then N:=N union {o};
else N:=N;
fi;
od;
N;
end:
#(64)A procedure to find the number of normal spaces over a given set.
NumberofNormalSpaces:=proc(X)
AllNormalSpaces(X);
print(`There are`,nops(AllNormalSpaces(X)),`Normal spaces over a set with`,nops(X),`points`);
end:
#(65) A procedure to find non normal Spaces over a given set.
NonNormalSpaces:=proc(X)
AllTopologies(X) minus AllNormalSpaces(X);
end:
#Implementations;
|
>
|
|
| (1) |
>
|
T:={{}, {a}, {a, b}, {a, c}, {a, b, c}};
CheckTopology(X,T);
|
| (2) |
| (3) |
| (4) |
>
|
CheckBoundary(a,A,X,T);
|
| (5) |
| (6) |
>
|
CheckInterior(c,A,X,T);
|
| (7) |
| (8) |
| (9) |
| (10) |
>
|
CheckExterior(b,A,X,T);
|
| (11) |
| (12) |
| (13) |
| (14) |
>
|
CheckIsolated(b,A,X,T);
|
| (15) |
| (16) |
| (17) |
| (18) |
>
|
NeitherOpenNorClosedSets(X,T);
|
| (19) |
| (20) |

| (21) |
| (22) |

| (23) |
>
|
NumberofT0Topologies(X);
|
| (24) |
| (25) |
>
|
GenerateTopologybySubBasis(X,K);
|
| (26) |
| (27) |
| (28) |
| (29) |
| (30) |
| (31) |

| (32) |
>
|
NumberofConnectedSpaces(X);
|
| (33) |
>
|
ConnectedComponents(a,X,T);
|
| (34) |
>
|
AllConnectedComponentsTopology(X,T);
|
| (35) |
>
|
CheckTotalyDisconnected(X,T);
|
| (36) |
>
|
AllTotalyDisconnected(X);
|
| (37) |
>
|
NumberofTotalyDisconnectedSpaces(X);
|
| (38) |
>
|
AllDisconnectedSpaces(X);
|

| (39) |
>
|
NumberofDisconnectedSpaces(X);
|
| (40) |
>
|
CheckWeaklyDimensional(X,T);
|
| (41) |
>
|
AllWeaklyDimensionalSpaces(X);
|

| (42) |
>
|
NumberofWeaklyDimensionalSpaces(X);
|
| (43) |
>
|
GenerateExtremalTopology(a,c, X);
|
| (44) |
>
|
AllExtremalTopologies(3);
|
![{{{}, {x[1]}, {x[2]}, {x[1], x[2]}, {x[1], x[3]}, {x[1], x[2], x[3]}}, {{}, {x[1]}, {x[2]}, {x[1], x[2]}, {x[2], x[3]}, {x[1], x[2], x[3]}}, {{}, {x[1]}, {x[3]}, {x[1], x[2]}, {x[1], x[3]}, {x[1], x[2], x[3]}}, {{}, {x[1]}, {x[3]}, {x[1], x[3]}, {x[2], x[3]}, {x[1], x[2], x[3]}}, {{}, {x[2]}, {x[3]}, {x[1], x[2]}, {x[2], x[3]}, {x[1], x[2], x[3]}}, {{}, {x[2]}, {x[3]}, {x[1], x[3]}, {x[2], x[3]}, {x[1], x[2], x[3]}}}](/view.aspx?SI=153849/d58f4c4b10e7a129c4ab40a3b254a366.gif)
| (45) |
>
|
NumberofExtremalTopologies(3);
|
| (46) |
>
|
AllNonTrivialMinimalTopologies(3);
|
![{{{}, {x[1]}, {x[1], x[2], x[3]}}, {{}, {x[2]}, {x[1], x[2], x[3]}}, {{}, {x[3]}, {x[1], x[2], x[3]}}, {{}, {x[1], x[2]}, {x[1], x[2], x[3]}}, {{}, {x[1], x[3]}, {x[1], x[2], x[3]}}, {{}, {x[2], x[3]}, {x[1], x[2], x[3]}}}](/view.aspx?SI=153849/54fd8675a666a605f14302f0f45b91ee.gif)
| (47) |
>
|
NumberofNonTrivialMinimalTopologies(5);
|
| (48) |
>
|
NumberofOpenSetsExtremal(a,c,X);
|
| (49) |
| (50) |
| (51) |
| (52) |
| (53) |
>
|
TXY:=ProductTopology([X,Y],[T,S]);nops(TXY);
|
| (54) |
| (55) |
| (56) |
| (57) |
>
|
CollectionsbyProperSubsets(X,T);
|

| (58) |
>
|
CollectionsUnionEmptyandFullSet(X,T);
|

| (59) |
>
|
Z:={0,1};
T1:={{},{0},Z};
T2:={{},{0},Z};
|
| (60) |
>
|
IsHomeomorphic(T1,T2,Z);
|
| (61) |
>
|
DisjointProperClosedSets(X,T);
|
| (62) |
>
|
DisjointProperOpenSets(X,T);
|
| (63) |
| (64) |

| (65) |
>
|
NumberofNormalSpaces(X);
|
| (66) |
| (67) |
|