Application Center - Maplesoft

App Preview:

Thermal Efficiency of the Combined (Binary) Cycle

You can switch back to the summary page by clicking here.

Learn about Maple
Download Application




Thermal Efficiency of the combined (binary) cycle

Author: Valery Ochkov (http://twt.mpei.ac.ru/ochkov/v_ochkov.htm)

Introduction

 

The figure shows the scheme of a simplest ideal combined (binary) cycle, i.e. steam turbine (6-7) cycle with use of superheated water steam. At this plant the boiler (6-9) burner is replaced with gas turbine unit (Brayton cycle: 1-4) equipped with air compressor (1-2), combustion chamber (2-3), gas turbine (3-4) and one more electric generator.

restartwith(ThermophysicalData)with(Units[Standard])

 

Calculations

 

Steam turbine cycle

 

Input data:

t_6 := Units:-Standard:-`*`(480, Unit('degC')); 1; p_6 := Units:-Standard:-`*`(9, Unit('MPa')); 1; p_7 := Units:-Standard:-`*`(4.76, Unit('kPa'))

480*Units:-Unit('`°C`')

9*Units:-Unit('MPa')

4.76*Units:-Unit('kPa')

 

Specific entropy of fresh (live) steam (the turbine inlet):

s_6 := Property(entropy, pressure = p_6, temperature = t_6, water)

6.593467590*Units:-Unit(kJ/(kg*K))

Specific enthalpy of fresh (live) steam (the turbine inlet):

h_6 := ThermophysicalData:-Property(enthalpy, pressure = p_6, temperature = t_6, water)

3336.426849*Units:-Unit(kJ/kg)

Outlet steam specific entropy from the turbine (an ideal process of the steam extension)

s_7 := s_6:

Dryness of steam in outlet of the turbine:

x_7 := ThermophysicalData:-Property(Q, P = p_7, entropy = s_7, water)

.7712559666

Outlet wet steam temperature from the turbine

t_7 := ThermophysicalData:-Property(temperature, pressure = p_7, Q = 1, water); -1; Units:-Standard:-`+`(t_7, Units:-Standard:-`-`(Units:-Standard:-`*`(273.15, Units:-Standard:-Unit('K'))))

32.0015827*Units:-Unit(`°C`)

Outlet wet steam specific enthalpy from of the  turbine:

h_7 := ThermophysicalData:-Property(enthalpy, T = t_7, Q = x_7, water)

2004.437563*Units:-Unit(kJ/kg)

Specific work of steam in the turbine:

w_st := Units:-Standard:-`+`(h_6, Units:-Standard:-`-`(h_7))

1331.989286*Units:-Unit(kJ/kg)

Specific enthalpy of water at saturated line at temperature in the condenser

hw_7 := ThermophysicalData:-Property(enthalpy, T = t_7, Q = 0, water)

134.1008689*Units:-Unit(kJ/kg)

Specific entropy of water at saturated line at temperature in the condenser

sw_7 := ThermophysicalData:-Property(entropy, T = t_7, Q = 0, water)

.4642623028*Units:-Unit(kJ/(kg*K))

 

Specific enthalpy of condensate

h_8 := hw_7:

Pressure of feed water

p_9 := p_6:

Specific entropy of feed water (an ideal process in the pump):

s_9 := sw_7:

Temperature of feed water:

t_9 := ThermophysicalData:-Property(temperature, pressure = p_9, entropy = s_9, water); -1; Units:-Standard:-`+`(t_9, Units:-Standard:-`-`(Units:-Standard:-`*`(273.15, Units:-Standard:-Unit('K'))))

32.2161406*Units:-Unit(`°C`)

Specific enthalpy of feed water:

h_9 := ThermophysicalData:-Property(enthalpy, pressure = p_9, temperature = t_9, water)

143.1237785*Units:-Unit(kJ/kg)

Specific useful work of the feed pump:

w_p := Units:-Standard:-`+`(h_9, Units:-Standard:-`-`(hw_7))

9.022909600*Units:-Unit(kJ/kg)

Specific heat supplied to the boiler:

q_b := Units:-Standard:-`+`(h_6, Units:-Standard:-`-`(h_9))

3193.303070*Units:-Unit(kJ/kg)

Hence the thermal efficiency of the steam turbine cycle:

`η_tst` := Units:-Standard:-`*`(Units:-Standard:-`+`(w_st, Units:-Standard:-`-`(w_p)), Units:-Standard:-`/`(q_b))

.4142940231

Gas turbine cycle

 

Input data:

t_1 := Units:-Standard:-`*`(15, Units:-Standard:-Unit('degC')); 1; p_1 := Units:-Standard:-`*`(.1, Units:-Standard:-Unit('MPa')); 1; p_2 := Units:-Standard:-Unit('MPa'); 1; t_3 := Units:-Standard:-`*`(1100, Units:-Standard:-Unit('degC')); 1; t_5 := Units:-Standard:-`*`(130, Units:-Standard:-Unit('degC'))

15*Units:-Unit('`°C`')

.1*Units:-Unit('MPa')

Units:-Unit('MPa')

1100*Units:-Unit('`°C`')

130*Units:-Unit('`°C`')

Specific enthalpy of fresh air

h_1 := ThermophysicalData:-Property(enthalpy, pressure = p_1, temperature = t_1, air)

414.3778321*Units:-Unit(kJ/kg)

Specific entropy of fresh air

s_1 := ThermophysicalData:-Property(entropy, pressure = p_1, temperature = t_1, air)

3.849952078*Units:-Unit(kJ/(kg*K))

Outlet air specific entropy, temperature and spacific enthalpy from the compessor

s_2 := s_1:

t_2 := ThermophysicalData:-Property(temperature, pressure = p_2, entropy = s_2, air); -1; Units:-Standard:-`+`(t_2, Units:-Standard:-`-`(Units:-Standard:-`*`(273.15, Units:-Standard:-Unit('K'))))

279.4631181*Units:-Unit(`°C`)

h_2 := ThermophysicalData:-Property(enthalpy, pressure = p_2, temperature = t_2, air)

683.6031240*Units:-Unit(kJ/kg)

Inlet gas pressure, specific entropy and specific enthalpy to  the gas turbine

p_3 := p_2:

s_3 := ThermophysicalData:-Property(entropy, pressure = p_3, temperature = t_3, air)

4.867024310*Units:-Unit(kJ/(kg*K))

h_3 := ThermophysicalData:-Property(enthalpy, pressure = p_3, temperature = t_3, air)

1610.338970*Units:-Unit(kJ/kg)

Outlet gas pressure, specific entropy, temperature and specific enthalpy from the gas turbine

p_4 := p_1:

s_4 := s_3:

t_4 := ThermophysicalData:-Property(temperature, pressure = p_4, entropy = s_4, air); -1; Units:-Standard:-`+`(t_4, Units:-Standard:-`-`(Units:-Standard:-`*`(273.15, Units:-Standard:-Unit('K'))))

498.0105159*Units:-Unit(`°C`)

h_4 := ThermophysicalData:-Property(enthalpy, pressure = p_4, temperature = t_4, air)

916.8176736*Units:-Unit(kJ/kg)

Specific heat supplied to the combustion chamber:

q_1 := Units:-Standard:-`+`(h_3, Units:-Standard:-`-`(h_2))

926.7358460*Units:-Unit(kJ/kg)

Specific work of the gas turbine

w_gt := Units:-Standard:-`+`(h_3, Units:-Standard:-`-`(h_4))

693.5212964*Units:-Unit(kJ/kg)

Specific work of the air compressor

w_c := Units:-Standard:-`+`(h_2, Units:-Standard:-`-`(h_1))

269.2252919*Units:-Unit(kJ/kg)

Hence the thermal efficiency of the gas turbine cycle:

`η_tgt` := Units:-Standard:-`*`(Units:-Standard:-`+`(w_gt, Units:-Standard:-`-`(w_c)), Units:-Standard:-`/`(q_1))

.4578392067

Combined (binary) cycle

 

Outlet gas pressure and specific enthalpy from the steam boiler

p_5 := p_4:

h_5 := ThermophysicalData:-Property(enthalpy, pressure = p_5, temperature = t_5, air)

530.4505082*Units:-Unit(kJ/kg)

 

Ratio of gas and steam mass flow

m := Units:-Standard:-`*`(Units:-Standard:-`+`(h_6, Units:-Standard:-`-`(h_9)), Units:-Standard:-`/`(Units:-Standard:-`+`(h_4, Units:-Standard:-`-`(h_5))))

8.264944217

Specific heat supplied to the combustion chamber:

q_1 := Units:-Standard:-`*`(m, Units:-Standard:-`+`(h_3, Units:-Standard:-`-`(h_2)))

7659.420071*Units:-Unit(kJ/kg)

Specific work of the gas turbine cycle

w_gtc := Units:-Standard:-`+`(Units:-Standard:-`+`(h_3, Units:-Standard:-`-`(h_4)), Units:-Standard:-`-`(Units:-Standard:-`+`(h_2, Units:-Standard:-`-`(h_1))))

424.2960045*Units:-Unit(kJ/kg)

Specific work of the steam turbine cycle

w_stc := Units:-Standard:-`+`(Units:-Standard:-`+`(h_6, Units:-Standard:-`-`(h_7)), Units:-Standard:-`-`(Units:-Standard:-`+`(h_9, Units:-Standard:-`-`(h_8))))

1322.966376*Units:-Unit(kJ/kg)

 

Hence the thermal efficiency of the Combined (binary) cycle is higher than separate steam or gas turbine cycles:

`η_tbc` := Units:-Standard:-`*`(Units:-Standard:-`+`(Units:-Standard:-`*`(m, w_gtc), w_stc), Units:-Standard:-`/`(q_1))

.6305632987

NULL

``