Application Center - Maplesoft

App Preview:

Thermodynamic Calculations of Vapor Compression Refrigeration Cycle with Regeneration

You can switch back to the summary page by clicking here.

Learn about Maple
Download Application




Thermodynamic Calculations of  Vapor Compression Refrigeration Cycle with Regeneration

Author: Volodymyr voloshchuk

Vl.volodya@gmail.com

Introduction

 

There are a variety of ways that the refrigeration cycle can be tailored to suit an application in a better way (not always necessarily resulting in a higher COP) than the simple (basic) vapor compression cycle.

Addition of a single heat exchanger to the basic vapor compression cycle, exchanging heat between the fluid leaving the evaporator and the fluid leaving the condenser benefits of this cycle modification.
First, since the specific enthalpy remains constant during expansion, a reduction of the specific enthalpy prior to expansion results in a reduction of specific enthalpy prior to evaporation. Therefore the unit will have more evaporative heat transfer to provide more evaporator cooling capacity. Second, the state prior to compression is further away from the saturated vapor line. For most compressors, it is imperative
that the state of the refrigerant prior to compression does not have any liquid in the form of droplets or mist, since liquid entrained in a vapor undergoing compression tends to damage the fast moving parts of a compressor, seriously degrading the performance and working life span of the compressor. For this reason, it is usually desirable for the refrigerant to enter the compressor as a superheated vapor, several degrees above the saturation temperature at the pre-compression pressure. The internal heat exchanger, by increasing the enthalpy and temperature of the pre-compression refrigerant, assists in ensuring that a superheated vapor with no liquid droplets enters the compressor.

This application is for thermodynamic calculations of  vapor compression refrigeration cycle with regeneration

Creation functions on properties and processes of working fluids

 

restart

with(ThermophysicalData):

 

Vapor pressure on the saturated line as a function of temperature

PSVTwf := proc (T, wf) options operator, arrow; Property(P, temperature = T, Q = 1, wf) end proc:

 

Liquid pressure on the saturated line as a function of temperature

PSLTwf := proc (T, wf) options operator, arrow; Property(P, temperature = T, Q = 0, wf) end proc:

 

Liquid temperature on the saturated line as a function of pressure

TSLPwf := proc (p, wf) options operator, arrow; Property(T, pressure = p, Q = 0, wf) end proc:

 

Vapor temperature on the saturated line as a function of pressure

TSVPwf := proc (p, wf) options operator, arrow; Property(T, pressure = p, Q = 1, wf) end proc:

 

Liquid specific enthalpy on the saturated line as a function of temperature

HSLTwf := proc (T, wf) options operator, arrow; Property(enthalpy, temperature = T, Q = 0, wf) end proc:

 

Liquid specific enthalpy on the saturated line as a function of pressure

HSLPwf := proc (p, wf) options operator, arrow; Property(enthalpy, pressure = p, Q = 0, wf) end proc:

 

Vapor specific enthalpy on the saturated line as a function of pressure

HSVPwf := proc (p, wf) options operator, arrow; Property(enthalpy, pressure = p, Q = 1, wf) end proc:

 

Liquid specific entropy on the saturated line as a function of temperature

SSLTwf := proc (T, wf) options operator, arrow; Property(entropy, temperature = T, Q = 0, wf) end proc:

 

Liquid specific entropy on the saturated line as a function of pressure

SSLPwf := proc (p, wf) options operator, arrow; Property(entropy, pressure = p, Q = 0, wf) end proc:

 

Vapor specific entropy on the saturated line as a function of pressure

SSVPwf := proc (p, wf) options operator, arrow; Property(entropy, pressure = p, Q = 1, wf) end proc:

 

Temperature as a function of pressure and specific entropy

TPSwf := proc (p, s, wf) options operator, arrow; Property(T, pressure = p, entropy = s, wf) end proc:

 

Temperature as a function of pressure and specific enthalpy

TPHwf := proc (p, h, wf) options operator, arrow; Property(T, pressure = p, enthalpy = h, wf) end proc:

 

Specific enthalpy as a function of pressure and temperature

HPTwf := proc (p, T, wf) options operator, arrow; Property(H, pressure = p, temperature = T, wf) end proc:

 

Specific entropy as a function of pressure and temperature

SPTwf := proc (p, T, wf) options operator, arrow; Property(S, pressure = p, temperature = T, wf) end proc:

NULL

HCOMPRESSIONPTPEFFwf := proc (p1, T1, p2, eff, wf) local h1, s1, s2_is, T2_is, h2_is; h1 := HPTwf(p1, T1, wf); s1 := SPTwf(p1, T1, wf); s2_is := s1; T2_is := TPSwf(p2, s2_is, wf); h2_is := HPTwf(p2, T2_is, wf); return h1+(h2_is-h1)/eff end proc:

 

 

Input Data

 

Temperature of heat source fluid at evaporator outlet

`T__EV,out` := Units:-Standard:-`*`(Units:-Standard:-`+`(-12, 273.15), Unit('K'))

261.15*Units:-Unit(K)

(3.1)

Temperature of heat consumption fluid at condenser outlet

`T__CD,out` := Units:-Standard:-`*`(Units:-Standard:-`+`(50, 273.15), Units:-Standard:-Unit('K'))

323.15*Units:-Unit(K)

(3.2)

Temperature difference at the cold end of the evaporator

`δT__EV,c` := Units:-Standard:-`*`(4, Units:-Standard:-Unit('K'))

4*Units:-Unit(K)

(3.3)

Temperature difference at the hot end of the condenser

`δT__CD,h` := Units:-Standard:-`*`(4, Units:-Standard:-Unit('K'))

4*Units:-Unit(K)

(3.4)

Temperature difference at hot end of the regenerator

`δT__R,h` := Units:-Standard:-`*`(10, Units:-Standard:-Unit('K'))

10*Units:-Unit(K)

(3.5)

Isentropic efficiency of the compressor

eta__comp := .8

.8

(3.6)

Working fluid

wf := R134a

R134a

(3.7)

 

Calculations

 

Temperature of  the working fluid at the evaporator intlet

T__5 := Units:-Standard:-`+`(`T__EV,out`, Units:-Standard:-`-`(`δT__EV,c`))

257.15*Units:-Unit(K)

(4.1)

Pressure of  the working fluid at the evaporator intlet

p__5 := PSLTwf(T__5, wf)

157281.6693*Units:-Unit(Pa)

(4.2)

Pressure of  the working fluid at the compressor outlet

p__2 := PSVTwf(Units:-Standard:-`+`(`T__CD,out`, `δT__CD,h`), wf)

1455493.461*Units:-Unit(Pa)

(4.3)

Pressure of  the working fluid at the condenser outlet

p__3 := p__2``

1455493.461*Units:-Unit(Pa)

(4.4)

Temperature of  the working fluid at the condenser outlet

T__3 := TSLPwf(p__3, wf)

327.1500000*Units:-Unit(K)

(4.5)

 

Specific enthalpy of  the working fluid at the condenser outlet

h__3 := HSLTwf(T__3, wf)

277885.5343*Units:-Unit(J/kg)

(4.6)

Specific entropy of  the working fluid at the condenser outlet

s__3 := SSLTwf(T__3, wf)

1256.326248*Units:-Unit(J/(kg*K))

(4.7)

 

Pressure of  the working fluid at the compressor intlet

p[1] := p__5

 

157281.6693*Units:-Unit(Pa)

(4.8)

 

Temperature of  the working fluid at the compressor intlet

T__1 := Units:-Standard:-`+`(T__3, Units:-Standard:-`-`(`δT__R,h`))

 

317.1500000*Units:-Unit(K)

(4.9)

 

 

Specific enthalpy of  the working fluid at the compressor intlet

h[1] := HPTwf(p[1], T__1, wf)

 

440106.7713*Units:-Unit(J/kg)

(4.10)

 

Specific entropy of  the working fluid at the compressor intlet

s[1] := SPTwf(p[1], T__1, wf)

 

1916.245822*Units:-Unit(J/(kg*K))

(4.11)

 

Specific enthalpy of  the working fluid at the compressor outlet

h[2] := HCOMPRESSIONPTPEFFwf(p[1], T__1, p__2, eta__comp, wf)

 

515510.8832*Units:-Unit(J/kg)

(4.12)

 

Enhtalpy change in the compressor after actual compression

l[c] := Units:-Standard:-`+`(h[2], Units:-Standard:-`-`(h[1]))

75404.1119*Units:-Unit(J/kg)

(4.13)

 

Temperature of  the working fluid at the compressor outlet

T[2] := TPHwf(p__2, h[2], wf)

 

407.5661697*Units:-Unit(K)

(4.14)

 

Specific entropy of  the working fluid at the compressor outlet

s[2] := SPTwf(p__2, T[2], wf)

 

1953.884662*Units:-Unit(J/(kg*K))

(4.15)

 

Temperature of saturated liquid of  the working fluid at the evaporator inlet

`T__sl,5` := TSLPwf(p__5, wf)

257.1500000*Units:-Unit(K)

(4.16)

Specific enthalpy of saturated liquid of  the working fluid at the evaporator inlet

`h__sl,5` := HSLPwf(p__5, wf)

178832.7165*Units:-Unit(J/kg)

(4.17)

Pressure of  the working fluid at the compressor intlet

p[6] := p[1]NULL

 

157281.6693*Units:-Unit(Pa)

(4.18)

 

Temperature of saturated vapor of  the working fluid at the evaporator outlet

T__6 := TSVPwf(p[6], wf)

257.1500000*Units:-Unit(K)

(4.19)

Specific enthalpy of saturated vapor of  the working fluid at the evaporator outlet

h__6 := HSVPwf(p[6], wf)

389016.0958*Units:-Unit(J/kg)

(4.20)
Specific enthalpy of the working fluid at the regenerator outlet

 

h__4 := Units:-Standard:-`+`(h__3, Units:-Standard:-`-`(Units:-Standard:-`+`(h[1], Units:-Standard:-`-`(h__6))))

226794.8588*Units:-Unit(J/kg)

(4.21)

Pressure of  the working fluid at the regenerator outlet

p[4] := p__3

1455493.461*Units:-Unit(Pa)

(4.22)

Temperature of  the working fluid at the regenerator outlet

T[4] := TPHwf(p[4], h__4, wf)

292.6098777*Units:-Unit(K)

(4.23)

Specific entropy of  the working fluid at the regenerator outlet

s[4] := SPTwf(p[4], T[4], wf)

 

1091.487736*Units:-Unit(J/(kg*K))

(4.24)

 

Specific enthalpy of  the working fluid at the evaporator intlet

h[5] := h__4

226794.8588*Units:-Unit(J/kg)

(4.25)

Quality of  the working fluid at the evaporator intlet

x__5 := Units:-Standard:-`*`(Units:-Standard:-`+`(h[5], Units:-Standard:-`-`(`h__sl,5`)), Units:-Standard:-`/`(Units:-Standard:-`+`(h__6, Units:-Standard:-`-`(`h__sl,5`))))

.2281918887

(4.26)

Specific entropy of saturated liquid of  the working fluid at the evaporator inlet

`s__sl,5` := SSLPwf(p__5, wf)

920.5433194*Units:-Unit(J/(kg*K))

(4.27)

Specific entropy of saturated vapor of  the working fluid at the evaporator outlet

`s__sv,6` := SSVPwf(p[6], wf)

1737.900424*Units:-Unit(J/(kg*K))

(4.28)

Specific entropy of  the working fluid at the evaporator inlet

s[5] := Units:-Standard:-`+`(`s__sl,5`, Units:-Standard:-`*`(x__5, Units:-Standard:-`+`(`s__sv,6`, Units:-Standard:-`-`(`s__sl,5`))))

1107.057581*Units:-Unit(J/(kg*K))

(4.29)

Heat rejection in the condenser

q[out] := Units:-Standard:-`+`(h[2], Units:-Standard:-`-`(h__3))

237625.3489*Units:-Unit(J/kg)

(4.30)

 

Heat addition in the evaporator

`#msub(mi("q",fontstyle = "normal"),mo("in",fontweight = "bold"))` := Units:-Standard:-`+`(h__6, Units:-Standard:-`-`(h[5]))

162221.2370*Units:-Unit(J/kg)

(4.31)

Coefficent of performance of a refrigerator

COP[R] := Units:-Standard:-`*`(`#msub(mi("q",fontstyle = "normal"),mo("in",fontweight = "bold"))`, Units:-Standard:-`/`(l[c]))

2.151357969

(4.32)

Coefficent of performance of a heat pump

COP[HP] := Units:-Standard:-`*`(q[out], Units:-Standard:-`/`(l[c]))

3.151357969

(4.33)

Plot the Refrigeration Cycle on a P-h-T Chart

 

phtChart := PHTChart(wf, Units:-Standard:-`*`(100, Unit('kPa')) .. Units:-Standard:-`*`(4100, Unit('kPa'))):

pts := `~`[`~`[convert]]([[h[1], p[1]], [h[2], p__2], [h__3, p__3], [h__4, p[4]], [h[5], p__5], [h__6, p[6]], [h[1], p[1]]], unit_free):

cycle := pointplot(`~`[`*`](0.1e-2, pts), connect = true, color = "DarkRed", thickness = 5):

plots:-display(phtChart, cycle)

 

NULL