Application Center - Maplesoft

App Preview:

Calculating and Graphing the Bremsstrahlung Emission Over All Frequencies for the Orion Nebula

You can switch back to the summary page by clicking here.

Learn about Maple
Download Application




Calculating and Graphing the Bremsstrahlung Emission Over All Frequencies for the Orion Nebula

````

``

Problem

Calculate and graph the bremsstrahlung emission over all frequencies for the Orion Nebula. (The data are from Anderson and Eastwood (2007).)

 

Hints:

 

Use cgs units.

Begin by calculating the Planck function for frequency.

Calculate the free-free emission coefficient.

Calculate the optical depth.

Calculate the specific intensity.

Plot specfic intensity as a function of frequency.

 

Data

Temperature in Kelvins

T := 8000

 

Electron Density in cm"^(-3)"

ne := 6000

 

Line-of-Sight Thickness in Parsecs

l := 4.29

 

Cm per PC

pc := 3.086*10^18

 

Speed of Light in cm/s

c := 2.9979*10^10

 

Planck Constant

h := 6.626*10^(-27)

 

Boltzmann Constant

k := 1.381*10^(-16) 

 

Gaunt Factor: Free-Free

gff := 1 

 

Atomic Number for Hydrogen

Z := 1

NULL

 

Useful Equations

Planck's Function

NULL

B[nu] = 2*h*nu^3/(c^2*(exp(h*nu/(k*T))-1))

 

Optical Depth

  tau := 3.7*10^8*Z^2*(1-exp(-h*nu/(8000*k)))*gff*ne^2*l*pc/(T^.5*nu^3) 

 

Specific Intensity

 J[nu] = (B(Te))(1-e^(-tau)) 

 

 

Solution

 

Calculate the Planck function:

 

``

B[nu] = 2*h*nu^3/(c^2*(exp(h*nu/(k*T))-1))

B[nu] = 0.1474508033e-46*nu^3/(exp(0.5997465605e-14*nu)-1)

(4.1)

Calculate the optical depth (τ), using (ne^2), where (ni*ne) is considered to be equal to ne^2:

tau := 3.7*10^8*8000^(-.5)*Z^2*(1-exp(-h*nu/(8000*k)))*ne^2*l*pc/nu^3

0.1971571108e34*(1-exp(-0.5997465605e-14*nu))/nu^3

(4.2)

Calculate J, the specific intensity, and plot it as a function of ν:NULL

``

``

J = B*(1-e^(-tau))

J := 1.474409669*10^(-47)*nu^3*(1-exp(-2.251911056*10^33*(1-exp(-5.997465604*10^(-15)*nu))/nu^3))/(exp(4.797972484*10^(-11)*nu*(1/8000))-1)

0.1474409669e-46*nu^3*(1-exp(-0.2251911056e34*(1-exp(-0.5997465604e-14*nu))/nu^3))/(exp(0.5997465605e-14*nu)-1)

(4.3)

Then plot J(ν):

``

with(plots)

NULL

loglogplot(J, nu = 10^5 .. 10^17, labels = ["frequency", "specific intensity"], labeldirections = ["horizontal", "vertical"], axis = [gridlines = [50, colour = green, majorlines = 2]])

The curve begins on the left as a Planck function (τ>>1). At the top, where τ<<1 (optically thin gas), the emission is no longer a function of ν, and the curve levels off. This is the bremsstrahlung portion of the plot. At high frequency, the emission is a function of both frequency and temperature and falls exponentially. The specific intensity (J) is given in units of erg s-1 cm-2 sr-1. To convert to SI units (W m-2 sr-1), multiply the cgs values by 10-3.

   

References

--------------------------------------------------------------------------

 

Anderson, M. and Eastwood, M. (2013). Problem Set 5. AY 121 Radiative Processes. http://www.astro.caltech.edu/~mmanders/ay121/solutions/ps5solutions.pdf. (Accessed: 2016-03-09.)

NULL

NULL

NULL

NULL

NULL

NULL

NULL

NULL