Application Center - Maplesoft

App Preview:

Carbon Monoxide Combustion

You can switch back to the summary page by clicking here.

Learn about Maple
Download Application




Adiabatic Flame Temperature and Equilibrium Composition of the Combustion of Carbon Monoxide

Introduction

 

One mole of carbon monoxide and 0.5 moles of oxygen are ignited at 298.15 K and 1 atm. The reaction is

 

CO + 0.5 O2 → CO2

 

The combustion products undergo dissociation and contain CO2, CO, O and O2.

 

• 

The equilibrium composition is found by minimizing the Gibbs Energy of the combustion products (formulated as a series of equations constructed via the method of Lagrange multipliers)

• 

The adiabatic flame temperature is found by balancing the enthalpy of the reactants against the enthalpy of the products

 

The resulting equations are solved numerically to give the adiabatic flame temperature and equilibrium composition of the mixture.

 

Physical Properties

 

restart:
with(ThermophysicalData:-Chemicals):

 

Enthalpies of formation

h_f_CO  := Property("HeatOfFormation", "CO");
h_f_C   := Property("HeatOfFormation", "C(gr)");
h_f_O2  := Property("HeatOfFormation", "O2");
h_f_CO2 := Property("HeatOfFormation", "CO2");
h_f_O   := Property("HeatOfFormation", "O");

-110535.196

 

0.

 

0.

 

-393510.000

 

249175.003

(2.1)

Enthalpies as a function of temperature

h_CO  := Property("Hmolar", "CO",    "temperature" = T):
h_C   := Property("Hmolar", "C(gr)", "temperature" = T):
h_O2  := Property("Hmolar", "O2",    "temperature" = T):
h_O   := Property("Hmolar", "O",     "temperature" = T):
h_CO2 := Property("Hmolar", "CO2",   "temperature" = T):

Reference enthalpies

h_r_CO2 := eval(h_CO2, T = 298.15);
h_r_CO  := eval(h_CO,  T = 298.15);
h_r_O2  := eval(h_O2,  T = 298.15);
h_r_O   := eval(h_O,   T = 298.15);
h_r_C   := eval(h_C,   T = 298.15)

-393510.0001

 

-110535.1957

 

0.

 

249175.0027

 

0.

(2.2)

Entropy as a function of temperature

s_CO  := Property("Smolar", "CO",    "temperature" = T):
s_C   := Property("Smolar", "C(gr)", "temperature" = T):
s_O2  := Property("Smolar", "O2",    "temperature" = T):
s_O   := Property("Smolar", "O",     "temperature" = T):
s_CO2 := Property("Smolar", "CO2",   "temperature" = T):

Gibbs Energy

 

CO

 

C (gr) + 0.5 O2 (g)  → CO (g)

G_CO := proc(temp)
   local DeltaH, DeltaS, DeltaG_CO:
   DeltaH := eval(h_CO - (h_C + 0.5 * h_O2), T = temp):
   DeltaS := eval(s_CO - (s_C + 0.5 * s_O2), T = temp);
   DeltaG_CO := DeltaH - DeltaS * temp
end proc:

CO2

 

C (gr) + 1 O2 (g) → CO2 (g)

G_CO2 := proc(temp)
   local DeltaH, DeltaS, DeltaG_CO:
   DeltaH := eval(h_CO2 - (h_C + h_O2), T = temp):
   DeltaS := eval(s_CO2 - (s_C + s_O2), T = temp);
   DeltaG_CO := DeltaH - DeltaS * temp
end proc:

 

O2

 

O (g)+ O (g)  → O2 (g)

G_O2 := proc(temp)
   return 0:
end proc:

O

 

 0.5 O2  (g) O  (g)

G_O := proc(temp)
   local DeltaH, DeltaS, DeltaG_O:
   DeltaH := eval(h_O - 0.5 * h_O2, T = temp):
   DeltaS := eval(s_O - 0.5 * s_O2, T = temp);
   DeltaG_O := DeltaH - DeltaS * temp:
end proc:

Constraints

 

Balancing the reactants and products gives

 

CO + 0.5 O2 = n1 CO2 + n2 CO + n3 O + n4 O2

 

This results in the following constraint on the carbon atoms...

n1 + n2 = 1

 

...and this constraint on the oxygen atoms

2 n1 + n2 + n3 + 2 n4 = 2

con1 := 2 * n1 + n2 + n3 + 2 * n4 = 2:
con2 := n1 + n2 = 1:

 

Equilibrium Composition

 

Total number of moles in products

nt := n1 + n2 + n3 + n4:

 

Gibbs Energy of the combustion product

gibbs :=   n1 * (G_CO2(T) + 8.3144 * T * ln(n1/nt))
         + n2 * (G_CO(T)  + 8.3144 * T * ln(n2/nt))
         + n3 * (G_O(T)   + 8.3144 * T * ln(n3/nt))
         + n4 * (G_O2(T)  + 8.3144 * T * ln(n4/nt)):

 

 

For a given temperature, minimizing the Gibbs Energy of the combustion products will give the equilibrium composition. Hence the values of n1, n2, n3, and n4 are given by the numeric solution of these equations, where L1 and L2 are the Lagrange multipliers.

eqComposition :=
L1 * diff(lhs(con1), n1) + L2 * diff(lhs(con2), n1) = diff(gibbs, n1),
L1 * diff(lhs(con1), n2) + L2 * diff(lhs(con2), n2) = diff(gibbs, n2),
L1 * diff(lhs(con1), n3) + L2 * diff(lhs(con2), n3) = diff(gibbs, n3),
L1 * diff(lhs(con1), n4) + L2 * diff(lhs(con2), n4) = diff(gibbs, n4):

 

Adiabatic Flame Temperature

 

Equating the enthalpy of the reactants and products gives

H_reactants := h_f_CO + 0.5 * h_f_O2:
H_products :=
        n1 * (h_f_CO2 + h_CO2 - h_r_CO2)
      + n2 * (h_f_CO  + h_CO  - h_r_CO)
      + n3 * (h_f_O   + h_O   - h_r_O)
      + n4 * (h_f_O2  + h_O2  - h_r_O2):

flameTemp := H_reactants = H_products:

Numerical solution

 

Hence the adiabatic flame temperature and equilibrium composition of the products are

fsolve({eqComposition, flameTemp, con1, con2}, {L1 = -1000, L2 = -1000, T = 4000, n1 = 0.1, n2 = 0.1, n3 = 0.1, n4 = 0.1})

{L1 = -23097.64077, L2 = -368733.3047, T = 2975.347123, n1 = .5651323738, n2 = .4348676262, n3 = 0.5076221806e-1, n4 = .1920527041}

(6.1)

 

 

Legal Notice: © Maplesoft, a division of Waterloo Maple Inc. 2018. Maplesoft and Maple are trademarks of Waterloo Maple Inc. This application may contain errors and Maplesoft is not liable for any damages resulting from the use of this material. This application is intended for non-commercial, non-profit use only. Contact Maplesoft for permission if you wish to use this application in for-profit activities.