
Performance of a Monomethylhydrazine-Dinitrogen Tetroxide Rocket
|
Introduction
|
|
Liquid monomethylhydrazine (CH6N2) and dinitrogen tetroxide (N2O4) are burned in the combustion chamber of a rocket engine. The oxidizer to fuel ratio is 2.5 (i.e. in the ratio of 1 mole of CH6N2 to 1.2518 moles of N2O4).

This application will calculate
• |
the adiabatic flame temperature and composition of the combustion products (i.e. in the combustion chamber)
|
• |
the pressures and temperatures in the throat and exit
|
• |
and the theoretical rocket performance, including the ideal specific impulse, characteristic velocity, and sonic velocity.
|
Monomethylhydrazine and dinitrogen tetroxide are commonly used in spacecraft rocket engines as a fuel and oxidizer. The thrusters used by SpaceX’s Dragon spacecraft, for example, use this combination.
Assumptions
• |
The combustion chamber is large compared to the throat, hence the assumption of an infinite area ratio
|
• |
The flow composition is "frozen" at the combustion chamber, i.e. the composition does not change through the nozzle expansion (i.e. reaction rate is slow compared to flowrate)
|
• |
The combustion products only contain CO, HNO, H2O, NO2, O, CO2, HO2, H2O2, N2, OH, H, H2, NO, N2O and O2. No other species are considered
|
|
|
Physical Properties
|
|
> |
with(ThermophysicalData:-Chemicals):
|
Ideal gas constant
Chamber Pressure
> |
P_c := 68.0 * Unit(bar):
|
Atmospheric Pressure
> |
P_a := 1.01325 * Unit(bar):
|
Standard pressure
> |
P_s := 1.0 * Unit(bar):
|
Molecular weights
> |
mw_CH6N2L := Property("MolarMass", "CH6N2(L)", useunits): mw_N2O4L := Property("MolarMass", "N2O4(L)", useunits): mw_CO := Property("MolarMass", "CO", useunits): mw_HNO := Property("MolarMass", "HNO", useunits): mw_H2O := Property("MolarMass", "H2O", useunits): mw_NO2 := Property("MolarMass", "NO2", useunits): mw_O := Property("MolarMass", "O", useunits): mw_CO2 := Property("MolarMass", "CO2", useunits): mw_HO2 := Property("MolarMass", "HO2", useunits): mw_H2O2 := Property("MolarMass", "H2O2", useunits): mw_N2 := Property("MolarMass", "N2", useunits): mw_OH := Property("MolarMass", "OH", useunits): mw_H := Property("MolarMass", "H", useunits): mw_H2 := Property("MolarMass", "H2", useunits): mw_NO := Property("MolarMass", "NO", useunits): mw_N2O := Property("MolarMass", "N2O", useunits): mw_O2 := Property("MolarMass", "O2", useunits):
|
Specific heat capacity at constant pressure
> |
Cp_CO := Property("Cpmolar", "CO", "temperature" = T): Cp_HNO := Property("Cpmolar", "HNO", "temperature" = T): Cp_H2O := Property("Cpmolar", "H2O", "temperature" = T): Cp_NO2 := Property("Cpmolar", "NO2", "temperature" = T): Cp_O := Property("Cpmolar", "O", "temperature" = T): Cp_CO2 := Property("Cpmolar", "CO2", "temperature" = T): Cp_HO2 := Property("Cpmolar", "HO2", "temperature" = T): Cp_H2O2 := Property("Cpmolar", "H2O2", "temperature" = T): Cp_N2 := Property("Cpmolar", "N2", "temperature" = T): Cp_OH := Property("Cpmolar", "OH", "temperature" = T): Cp_H := Property("Cpmolar", "H", "temperature" = T): Cp_H2 := Property("Cpmolar", "H2", "temperature" = T): Cp_NO := Property("Cpmolar", "NO", "temperature" = T): Cp_N2O := Property("Cpmolar", "N2O", "temperature" = T): Cp_O2 := Property("Cpmolar", "O2", "temperature" = T):
|
Enthalpies
> |
h_CO := Property("Hmolar", "CO", "temperature" = T): h_HNO := Property("Hmolar", "HNO", "temperature" = T): h_H2O := Property("Hmolar", "H2O", "temperature" = T): h_NO2 := Property("Hmolar", "NO2", "temperature" = T): h_O := Property("Hmolar", "O", "temperature" = T): h_CO2 := Property("Hmolar", "CO2", "temperature" = T): h_HO2 := Property("Hmolar", "HO2", "temperature" = T): h_H2O2 := Property("Hmolar", "H2O2", "temperature" = T): h_N2 := Property("Hmolar", "N2", "temperature" = T): h_OH := Property("Hmolar", "OH", "temperature" = T): h_H := Property("Hmolar", "H", "temperature" = T): h_H2 := Property("Hmolar", "H2", "temperature" = T): h_NO := Property("Hmolar", "NO", "temperature" = T): h_N2O := Property("Hmolar", "N2O", "temperature" = T): h_O2 := Property("Hmolar", "O2", "temperature" = T): h_C := Property("Hmolar", "C(gr)", "temperature" = T):
|
Entropies
> |
s_CO := Property("Smolar", "CO", "temperature" = T) - R * ln(P_c/P_s): s_HNO := Property("Smolar", "HNO", "temperature" = T) - R * ln(P_c/P_s): s_H2O := Property("Smolar", "H2O", "temperature" = T) - R * ln(P_c/P_s): s_NO2 := Property("Smolar", "NO2", "temperature" = T) - R * ln(P_c/P_s): s_O := Property("Smolar", "O", "temperature" = T) - R * ln(P_c/P_s): s_CO2 := Property("Smolar", "CO2", "temperature" = T) - R * ln(P_c/P_s): s_HO2 := Property("Smolar", "HO2", "temperature" = T) - R * ln(P_c/P_s): s_H2O2 := Property("Smolar", "H2O2", "temperature" = T) - R * ln(P_c/P_s): s_N2 := Property("Smolar", "N2", "temperature" = T) - R * ln(P_c/P_s): s_OH := Property("Smolar", "OH", "temperature" = T) - R * ln(P_c/P_s): s_H := Property("Smolar", "H", "temperature" = T) - R * ln(P_c/P_s): s_H2 := Property("Smolar", "H2", "temperature" = T) - R * ln(P_c/P_s): s_NO := Property("Smolar", "NO", "temperature" = T) - R * ln(P_c/P_s): s_N2O := Property("Smolar", "N2O", "temperature" = T) - R * ln(P_c/P_s): s_O2 := Property("Smolar", "O2", "temperature" = T) - R * ln(P_c/P_s): s_C := Property("Smolar", "C(gr)", "temperature" = T):
|
Enthalpy of formation
> |
h_f_CH6N2L := Property("HeatOfFormation", "CH6N2(L)"); h_f_N2O4L := Property("HeatOfFormation", "N2O4(L)"); h_f_CO := Property("HeatOfFormation", "CO"); h_f_HNO := Property("HeatOfFormation", "HNO"); h_f_H2O := Property("HeatOfFormation", "H2O"); h_f_NO2 := Property("HeatOfFormation", "NO2"); h_f_O := Property("HeatOfFormation", "O"); h_f_CO2 := Property("HeatOfFormation", "CO2"); h_f_HO2 := Property("HeatOfFormation", "HO2"); h_f_H2O2 := Property("HeatOfFormation", "H2O2"); h_f_N2 := Property("HeatOfFormation", "N2"); h_f_OH := Property("HeatOfFormation", "OH"); h_f_H := Property("HeatOfFormation", "H"); h_f_H2 := Property("HeatOfFormation", "H2"); h_f_NO := Property("HeatOfFormation", "NO"); h_f_N2O := Property("HeatOfFormation", "N2O"); h_f_O2 := Property("HeatOfFormation", "O2");
|

|
(2.1) |
Reference enthalpies
> |
h_r_CO := eval(h_CO, T = 298.15); h_r_HNO := eval(h_HNO, T = 298.15); h_r_H2O := eval(h_H2O, T = 298.15); h_r_NO2 := eval(h_NO2, T = 298.15); h_r_O := eval(h_O, T = 298.15); h_r_CO2 := eval(h_CO2, T = 298.15); h_r_HO2 := eval(h_HO2, T = 298.15); h_r_H2O2 := eval(h_H2O2, T = 298.15); h_r_N2 := eval(h_N2, T = 298.15); h_r_OH := eval(h_OH, T = 298.15); h_r_H := eval(h_H, T = 298.15); h_r_H2 := eval(h_H2, T = 298.15); h_r_NO := eval(h_NO, T = 298.15); h_r_N2O := eval(h_N2O, T = 298.15); h_r_O2 := eval(h_O2, T = 298.15);
|

|
(2.2) |
Gibbs Energy of Formation of the combustion products
> |
Gibbs_CO := proc(temp) local DeltaH, DeltaS, DeltaG: DeltaH := eval(h_CO - (h_C + 0.5 * h_O2), T = temp): DeltaS := eval(s_CO - (s_C + 0.5 * s_O2), T = temp): DeltaG := DeltaH - DeltaS * temp: end proc:
|
> |
Gibbs_HNO := proc(temp) local DeltaH, DeltaS, DeltaG: DeltaH := eval(h_HNO - (0.5 * h_H2 + 0.5 * h_O2 + 0.5 * h_N2), T = temp): DeltaS := eval(s_HNO - (0.5 * s_H2 + 0.5 * s_O2 + 0.5 * s_N2), T = temp): DeltaG := DeltaH - DeltaS * temp: end proc:
|
> |
Gibbs_H2O := proc(temp) local DeltaH, DeltaS, DeltaG: DeltaH := eval(h_H2O - (h_H2 + 0.5 * h_O2), T = temp): DeltaS := eval(s_H2O - (s_H2 + 0.5 * s_O2), T = temp): DeltaG := DeltaH - DeltaS*temp: end proc:
|
> |
Gibbs_NO2 := proc(temp) local DeltaH, DeltaS, DeltaG: DeltaH := eval(h_NO2 - (0.5 * h_N2 + h_O2), T = temp): DeltaS := eval(s_NO2 - (0.5 * s_N2 + s_O2), T = temp): DeltaG := DeltaH - DeltaS * temp: end proc:
|
> |
Gibbs_O := proc(temp) local DeltaH, DeltaS, DeltaG: DeltaH := eval(h_O - 0.5 * h_O2, T = temp): DeltaS := eval(s_O - 0.5 * s_O2, T = temp): DeltaG := DeltaH - DeltaS*temp: return DeltaG: end proc:
|
> |
Gibbs_CO2 := proc(temp) local DeltaH, DeltaS, DeltaG: DeltaH := eval(h_CO2 - (h_C + h_O2), T = temp): DeltaS := eval(s_CO2 - (s_C + s_O2), T = temp): DeltaG := DeltaH - DeltaS * temp: end proc:
|
> |
Gibbs_HO2 := proc(temp) local DeltaH, DeltaS, DeltaG: DeltaH := eval(h_HO2 - (0.5 * h_H2 + h_O2), T = temp): DeltaS := eval(s_HO2 - (0.5 * s_H2 + s_O2), T = temp): DeltaG := DeltaH - DeltaS*temp: return DeltaG: end proc:
|
> |
Gibbs_H2O2 := proc(temp) local DeltaH, DeltaS, DeltaG: DeltaH := eval(h_H2O2 - (h_H2 + h_O2), T = temp): DeltaS := eval(s_H2O2 - (s_H2 + s_O2), T = temp): DeltaG := DeltaH - DeltaS*temp: return DeltaG: end proc:
|
> |
Gibbs_N2 := proc(temp) return 0 end proc:
|
> |
Gibbs_OH := proc(temp) local DeltaH, DeltaS, DeltaG: DeltaH := eval(h_OH - (0.5 * h_H2 + 0.5 * h_O2), T = temp): DeltaS := eval(s_OH - (0.5 * s_H2 + 0.5 * s_O2), T = temp): DeltaG := DeltaH - DeltaS*temp: return DeltaG: end proc:
|
> |
Gibbs_H := proc(temp) local DeltaH, DeltaS, DeltaG: DeltaH := eval(h_H - 0.5 * h_H2, T = temp): DeltaS := eval(s_H - 0.5 * s_H2, T = temp): DeltaG := DeltaH - DeltaS*temp: return DeltaG: end proc:
|
> |
Gibbs_H2 := proc(temp) return 0 end proc:
|
> |
Gibbs_NO := proc(temp) local DeltaH, DeltaS, DeltaG: DeltaH := eval(h_NO - (0.5 * h_N2 + 0.5 * h_O2), T = temp): DeltaS := eval(s_NO - (0.5 * s_N2 + 0.5 * s_O2), T = temp): DeltaG := DeltaH - DeltaS*temp: return DeltaG: end proc:
|
> |
Gibbs_N2O := proc(temp) local DeltaH, DeltaS, DeltaG: DeltaH := eval(h_N2O - (h_N2 + 0.5 * h_O2), T = temp): DeltaS := eval(s_N2O - (s_N2 + 0.5 * s_O2), T = temp): DeltaG := DeltaH - DeltaS * temp: return DeltaG: end proc:
|
> |
Gibbs_O2 := proc(temp) return 0 end proc:
|
Ratio of nozzle exit and combustion chamber throat area
Ratio of exit area to throat area
Mach number at throat ( = 1 for choked flow)
|
|
Equilibrium Composition
|
|
Balancing the C, H, O and N atoms in the fuel and oxidizer, and the combustion products gives the following table
Chemical
|
In Feed
|
In Products
|
C
|
H
|
O
|
N
|
CH6N2
|
1
|
|
1
|
6
|
|
2
|
N2O4
|

|
|
|
|
4 * 
|
2 * 
|
CO
|
|
n1
|
1
|
|
1
|
|
HNO
|
|
n2
|
|
1
|
1
|
1
|
H2O
|
|
n3
|
|
2
|
1
|
|
NO2
|
|
n4
|
|
|
2
|
1
|
O
|
|
n5
|
|
|
1
|
|
CO2
|
|
n6
|
1
|
|
2
|
|
HO2
|
|
n7
|
|
1
|
2
|
|
H2O2
|
|
n8
|
|
2
|
2
|
|
N2
|
|
n9
|
|
|
|
2
|
OH
|
|
n10
|
|
1
|
1
|
|
H
|
|
n11
|
|
1
|
|
|
H2
|
|
n12
|
|
2
|
|
|
NO
|
|
n13
|
|
|
1
|
1
|
N2O
|
|
n14
|
|
|
1
|
2
|
O2
|
|
n15
|
|
|
2
|
|
|
|
Hence the constraints are
> |
con2 := n2 + 2 * n3 + n7 + 2 * n8 + n10 + n11 + 2 * n12 = 6:
|
> |
con3 := n1 + n2 + n3 + 2 * n4 + n5 + 2 * n6 + 2 * n7 + 2 * n8 + n10 + n13 + n14 + 2 * n15 = 4 * 1.2518:
|
> |
con4 := n2 + n4 + 2 * n9 + n13 + 2 * n14 = 2 + 2 * 1.2518:
|
Total moles of combustion products
> |
nt := add(n||i, i = 1..15):
|
For a given temperature, minimizing the Gibbs Free Energy of the combustion products will give the equilibrium composition
> |
gibbs := n1 * (Gibbs_CO(T) + R * T * ln(n1/nt)) + n2 * (Gibbs_HNO(T) + R * T * ln(n2/nt)) + n3 * (Gibbs_H2O(T) + R * T * ln(n3/nt)) + n4 * (Gibbs_NO2(T) + R * T * ln(n4/nt)) + n5 * (Gibbs_O(T) + R * T * ln(n5/nt)) + n6 * (Gibbs_CO2(T) + R * T * ln(n6/nt)) + n7 * (Gibbs_HO2(T) + R * T * ln(n7/nt)) + n8 * (Gibbs_H2O2(T) + R * T * ln(n8/nt)) + n9 * (Gibbs_N2(T) + R * T * ln(n9/nt)) + n10 * (Gibbs_OH(T) + R * T * ln(n10/nt)) + n11 * (Gibbs_H(T) + R * T * ln(n11/nt)) + n12 * (Gibbs_H2(T) + R * T * ln(n12/nt)) + n13 * (Gibbs_NO(T) + R * T * ln(n13/nt)) + n14 * (Gibbs_N2O(T) + R * T * ln(n14/nt)) + n15 * (Gibbs_O2(T) + R * T * ln(n15/nt)):
|
Hence the values of n1, n2, n3, n4, n5, n6, n7 and n8 are given by the numeric solution of these equations, where L1 and L2 are the Lagrange multipliers.
> |
eqComposition := L1 * diff(lhs(con1), n1) + L2 * diff(lhs(con2), n1) + L3 * diff(lhs(con3), n1) + L4 * diff(lhs(con4), n1) = diff(gibbs, n1), L1 * diff(lhs(con1), n2) + L2 * diff(lhs(con2), n2) + L3 * diff(lhs(con3), n2) + L4 * diff(lhs(con4), n2) = diff(gibbs, n2), L1 * diff(lhs(con1), n3) + L2 * diff(lhs(con2), n3) + L3 * diff(lhs(con3), n3) + L4 * diff(lhs(con4), n3) = diff(gibbs, n3), L1 * diff(lhs(con1), n4) + L2 * diff(lhs(con2), n4) + L3 * diff(lhs(con3), n4) + L4 * diff(lhs(con4), n4) = diff(gibbs, n4), L1 * diff(lhs(con1), n5) + L2 * diff(lhs(con2), n5) + L3 * diff(lhs(con3), n5) + L4 * diff(lhs(con4), n5) = diff(gibbs, n5), L1 * diff(lhs(con1), n6) + L2 * diff(lhs(con2), n6) + L3 * diff(lhs(con3), n6) + L4 * diff(lhs(con4), n6) = diff(gibbs, n6), L1 * diff(lhs(con1), n7) + L2 * diff(lhs(con2), n7) + L3 * diff(lhs(con3), n7) + L4 * diff(lhs(con4), n7) = diff(gibbs, n7), L1 * diff(lhs(con1), n8) + L2 * diff(lhs(con2), n8) + L3 * diff(lhs(con3), n8) + L4 * diff(lhs(con4), n8) = diff(gibbs, n8), L1 * diff(lhs(con1), n9) + L2 * diff(lhs(con2), n9) + L3 * diff(lhs(con3), n9) + L4 * diff(lhs(con4), n9) = diff(gibbs, n9), L1 * diff(lhs(con1), n10) + L2 * diff(lhs(con2), n10) + L3 * diff(lhs(con3), n10) + L4 * diff(lhs(con4), n10) = diff(gibbs, n10), L1 * diff(lhs(con1), n11) + L2 * diff(lhs(con2), n11) + L3 * diff(lhs(con3), n11) + L4 * diff(lhs(con4), n11) = diff(gibbs, n11), L1 * diff(lhs(con1), n12) + L2 * diff(lhs(con2), n12) + L3 * diff(lhs(con3), n12) + L4 * diff(lhs(con4), n12) = diff(gibbs, n12), L1 * diff(lhs(con1), n13) + L2 * diff(lhs(con2), n13) + L3 * diff(lhs(con3), n13) + L4 * diff(lhs(con4), n13) = diff(gibbs, n13), L1 * diff(lhs(con1), n14) + L2 * diff(lhs(con2), n14) + L3 * diff(lhs(con3), n14) + L4 * diff(lhs(con4), n14) = diff(gibbs, n14), L1 * diff(lhs(con1), n15) + L2 * diff(lhs(con2), n15) + L3 * diff(lhs(con3), n15) + L4 * diff(lhs(con4), n15) = diff(gibbs, n15):
|
|
|
Heat Balance
|
|
The flame temperature is given by equating the heat of the reactants to the heat of the products
> |
H_reactants := 1 * h_f_CH6N2L + 1.2518 * h_f_N2O4L ;
|

|
(4.1) |
> |
H_products := + n1 * (h_f_CO + (h_CO - h_r_CO)) + n2 * (h_f_HNO + (h_HNO - h_r_HNO)) + n3 * (h_f_H2O + (h_H2O - h_r_H2O)) + n4 * (h_f_NO2 + (h_NO2 - h_r_NO2)) + n5 * (h_f_O + (h_O - h_r_O)) + n6 * (h_f_CO2 + (h_CO2 - h_r_CO2)) + n7 * (h_f_HO2 + (h_HO2 - h_r_HO2)) + n8 * (h_f_H2O2 + (h_H2O2 - h_r_H2O2)) + n9 * (h_f_N2 + (h_N2 - h_r_N2)) + n10 * (h_f_OH + (h_OH - h_r_OH)) + n11 * (h_f_H + (h_H - h_r_H)) + n12 * (h_f_H2 + (h_H2 - h_r_H2)) + n13 * (h_f_NO + (h_NO - h_r_NO)) + n14 * (h_f_N2O + (h_N2O - h_r_N2O)) + n15 * (h_f_O2 + (h_O2 - h_r_O2)):
|
> |
flameTemp := H_reactants = H_products:
|
|
|
Numerical Solution of Equilibrium Composition and Flame Temperature
|
|
> |
res:=fsolve({eqComposition, flameTemp, con1, con2, con3, con4}, {L1 = -1000, L2 = -1000, L3 = -1000, L4 = -1000, T = 3000, n1 = 0.1, n2 = 0.1, n2 = 0.1, n3 = 0.1, n4 = 0.1, n5 = 0.1, n6 = 0.1, n7 = 0.1, n8 = 0.1, n9 = 0.1, n10 = 0.1, n11 = 0.1, n12 = 0.1, n13 = 0.1, n14 = 0.1, n15 = 0.1})
|

|
(5.1) |
Hence the temperature in the rocket combustion chamber is
> |
T_c := eval(T,res) * Unit(K)
|

|
(5.2) |
The equilibrium composition of the combustion products are (in moles)
> |
mol_CO := eval(n1, res): mol_HNO := eval(n2, res): mol_H2O := eval(n3, res): mol_NO2 := eval(n4, res): mol_O := eval(n5, res): mol_CO2 := eval(n6, res): mol_HO2 := eval(n7, res): mol_H2O2 := eval(n8, res): mol_N2 := eval(n9, res): mol_OH := eval(n10, res): mol_H := eval(n11, res): mol_H2 := eval(n12, res): mol_NO := eval(n13, res): mol_N2O := eval(n14, res): mol_O2 := eval(n15, res):
|
> |
mol_total := mol_CO + mol_HNO + mol_H2O + mol_NO2 + mol_O + mol_CO2 + mol_HO2 + mol_H2O2 + mol_N2 + mol_OH + mol_H + mol_H2 + mol_NO + mol_N2O + mol_O2
|

|
(5.3) |
Mole fractions in the combustion products
> |
molFrac_CO := mol_CO / mol_total; molFrac_HNO := mol_HNO / mol_total; molFrac_H2O := mol_H2O / mol_total; molFrac_NO2 := mol_NO2 / mol_total; molFrac_O := mol_O / mol_total; molFrac_CO2 := mol_CO2 / mol_total; molFrac_HO2 := mol_HO2 / mol_total; molFrac_H2O2 := mol_H2O2 / mol_total; molFrac_N2 := mol_N2 / mol_total; molFrac_OH := mol_OH / mol_total; molFrac_H := mol_H / mol_total; molFrac_H2 := mol_H2 / mol_total; molFrac_NO := mol_NO / mol_total; molFrac_N2O := mol_N2O / mol_total; molFrac_O2 := mol_O2 / mol_total;
|

|
(5.4) |
|
|
Ideal Performance of an Infinite Area Ratio Rocket
|
|
Ideal gas constant
> |
R := 8.3144 * Unit(J/mol/K):
|
Gravity
> |
grav := 9.81*Unit(m/s^2):
|
Molecular weight of the combustion products
> |
Mw_mix := molFrac_CO * mw_CO + molFrac_HNO * mw_HNO + molFrac_H2O * mw_H2O + molFrac_NO2 * mw_NO2 + molFrac_O * mw_O + molFrac_CO2 * mw_CO2 + molFrac_HO2 * mw_HO2 + molFrac_H2O2 * mw_H2O2 + molFrac_N2 * mw_N2 + molFrac_OH * mw_OH + molFrac_H * mw_H + molFrac_H2 * mw_H2 + molFrac_NO * mw_NO + molFrac_N2O * mw_N2O + molFrac_O2 * mw_O2
|

|
(6.1) |
Specific heat capacity (at constant pressure) in the combustion chamber
> |
Cp_c_mol := eval( molFrac_CO * Cp_CO + molFrac_HNO * Cp_HNO + molFrac_H2O * Cp_H2O + molFrac_NO2 * Cp_NO2 + molFrac_O * Cp_O + molFrac_CO2 * Cp_CO2 + molFrac_HO2 * Cp_HO2 + molFrac_H2O2 * Cp_H2O2 + molFrac_N2 * Cp_N2 + molFrac_OH * Cp_OH + molFrac_H * Cp_H + molFrac_H2 * Cp_H2 + molFrac_NO * Cp_NO + molFrac_N2O * Cp_N2O + molFrac_O2 * Cp_O2 , T= T_c)
|

|
(6.2) |
Specific heat capacity (at constant volume) in the combustion chamber
> |
Cv_c_mol := Cp_c_mol - R
|

|
(6.3) |
Isentropic expansion coefficient in the chamber
> |
Gamma_c := Cp_c_mol / Cv_c_mol
|

|
(6.4) |
Mach number at exit
> |
M_e := fsolve(AeAt = ((Gamma_c + 1)/2) ^ (-(Gamma_c + 1)/(2 * (Gamma_c - 1))) * (1 + 0.5 * (Gamma_c - 1) * Me^2)^((Gamma_c + 1)/(2 * (Gamma_c - 1)))/Me, Me = 1)
|

|
(6.5) |
Throat temperature
> |
T_t := T_c * (1 + (Gamma_c - 1)/2 * M_t^2)^(-1)
|

|
(6.6) |
Exit temperature
> |
T_e := T_c * (1 + (Gamma_c - 1)/2 * M_e^2)^(-1)
|

|
(6.7) |
Specific heat capacity (at constant pressure) at throat
> |
Cp_t_mol := eval( molFrac_CO * Cp_CO + molFrac_HNO * Cp_HNO + molFrac_H2O * Cp_H2O + molFrac_NO2 * Cp_NO2 + molFrac_O * Cp_O + molFrac_CO2 * Cp_CO2 + molFrac_HO2 * Cp_HO2 + molFrac_H2O2 * Cp_H2O2 + molFrac_N2 * Cp_N2 + molFrac_OH * Cp_OH + molFrac_H * Cp_H + molFrac_H2 * Cp_H2 + molFrac_NO * Cp_NO + molFrac_N2O * Cp_N2O + molFrac_O2 * Cp_O2 , T= T_t)
|

|
(6.8) |
Isentropic expansion coefficient at throat
> |
Gamma_t := Cp_t_mol / (Cp_t_mol - R )
|

|
(6.9) |
Throat pressure
> |
P_t := P_c * (1 + (Gamma_c - 1)/2 * M_t^2)^(Gamma_c / (1 - Gamma_c))
|

|
(6.10) |
Exit pressure
> |
P_e := P_c * (1 + (Gamma_t - 1)/2 * M_e^2)^(Gamma_t / (1 - Gamma_t))
|

|
(6.11) |
Chamber gas density
> |
rho_c := P_c * Mw_mix/(R * T_c)
|

|
(6.12) |
Throat gas density
> |
rho_t := P_t * Mw_mix/(R * T_t )
|

|
(6.13) |
Sonic velocity in chamber and throat
> |
sonicVelocity_c := sqrt((Gamma_c * P_c/rho_c))
|

|
(6.14) |
> |
sonicVelocity_t := sqrt((Gamma_t * P_t/rho_t))
|

|
(6.15) |
Throat velocity for an isentropic nozzle
> |

|

|
(6.16) |
Ideal specific impulse
> |
Isp_ideal := V_t / grav
|

|
(6.17) |
Ideal specific impulse as defied by NASA CEA

|
(6.18) |
Ideal specific impulse in a vacuum.
> |
Isp_vac := (V_t + P_t / (rho_t * V_t)) / grav
|

|
(6.19) |
Characteristic velocity (C-Star)
> |
Cstar := sqrt(1 / Gamma_c * ((Gamma_c + 1)/2) ^ ((Gamma_c + 1)/(Gamma_c - 1)) * R / Mw_mix * T_c)
|

|
(6.20) |
|
Legal Notice: © Maplesoft, a division of Waterloo Maple Inc. 2018. Maplesoft and Maple are trademarks of Waterloo Maple Inc. This application may contain errors and Maplesoft is not liable for any damages resulting from the use of this material. This application is intended for non-commercial, non-profit use only. Contact Maplesoft for permission if you wish to use this application in for-profit activities.
|