Application Center - Maplesoft

App Preview:

THE SOLUTION STABILITY OF VAN DER POL’S EQUATION .

You can switch back to the summary page by clicking here.

Learn about Maple
Download Application


 

 

THE SOLUTION STABILITY OF     

VAN DER POL?S  EQUATION .  

                                                                                                                  by CO.   H . TRAN . 

   

                                                                                                           HUI -  NCU   HCMC   

                                                                                                                  Vietnam                                                                                     coth123@math.com   &  cohtran@math.com                                                                                                                   Copyright  2004                                                                                                         November  06   2004  ------------------------------------------------------------------------------------------------------------------------------------------------------------------------ **  Abstract  : The Van der Pol  differential quation  is solved  by  averaging  method  . ** Subjects:  Vibration Mechanics , The Differential equations  . ------------------------------------------------------------------------------------------------------------------------------------------------------------------------Introduction This worksheet demonstrates Maple's  capabilities in finding  the graphical solution and  dealing with the stability of the steady state solution of Van der Pol 's differential equation  .                                     All rights reserved.  Copying or transmitting of this material without the permission of the authors is not allowed . We consider the  Van Der Pol differential equation  :      

 

 

                                                                                                       [0] Two topics that we will be in discussion are -  Finding the steady state solution of this equation by averaging method .-  Estimating the stability of solution obtained . 1 .Define the model of  problem :  We examine the effect of non-linear system under external force caused by the AC generator ( see fig 1. )Image         Image( fig 1. ) The differential equation of this model is given in the form                                                                              +                                              [1] After simplifying we obtain  :                                                            [2] 

2 . Construct the algorithm .   

Generally the  Van Der Pol differential equation can be expressed by   :                                                                                                                     [3]In the special case let        and       the  equation will be rewritten as :          By using the transform                                                                         [4]Then       ω        and substitute these relations to   ( 2 )  it follows :           ω Or                                                                                                          [5] Thus we begin with  :                                                                                        [6]    To normalize this equation we find the solution which is expressed in the form                                   x = acos ( t + γ )It is advantageous to write   ?  =  t + γ  then the solution will be   x =  acos?                                                                            [7]From the transform      x =  acos?  ,   x? =   asin ? .  We have    x?  =  dx?/dt  =  a?sin?   acos? . ?? By substituting to ( 6 ) , it gives             a'sin? a cos?.? '+a cos? μ (1   cos? ).(a sin? ) = 0                                             [8]In the other hand        dx/dt  =  x? =  a?cos?   asin? .?? =  asin?                                                                          [9] Obviously we reach to the following system of differential equations                                  [10]       

>
 

 

 

Warning, the name GramSchmidt has been rebound
Warning, the protected names norm and trace have been redefined and unprotected  
 

>
 

(1)
 

>
 

(2)
 

>
 

(3)
 

>
 

 

 

Typesetting:-mprintslash([`assign`(a(tt), `+`(`-`(`*`(a, `*`(`^`(sin(phi), 2), `*`(mu, `*`(`+`(`-`(1), `*`(`^`(a, 2), `*`(`^`(cos(phi), 2)))))))))))], [`+`(`-`(`*`(a, `*`(`^`(sin(phi), 2), `*`(mu, `*`...
Typesetting:-mprintslash([`assign`(phi(tt), `+`(1, `*`(mu, `*`(sin(phi), `*`(cos(phi)))), `-`(`*`(mu, `*`(`^`(a, 2), `*`(sin(phi), `*`(`^`(cos(phi), 3))))))))], [`+`(1, `*`(mu, `*`(sin(phi), `*`(cos(p... (4)
 

>  
 

By using the symbols   a(tt)  =  a?(t)   ,  ?(tt)  =  ??(t)                                                                                      [11] Execute the  averaging method for  a?(t) and  ??(t) , we have  

>
 

Typesetting:-mprintslash([`assign`(a0(tt), `+`(`-`(`*`(`/`(1, 8), `*`(a, `*`(mu, `*`(`+`(`-`(4), `*`(`^`(a, 2))))))))))], [`+`(`-`(`*`(`/`(1, 8), `*`(a, `*`(mu, `*`(`+`(`-`(4), `*`(`^`(a, 2)))))))))]) (5)
 

>
 

Typesetting:-mprintslash([`assign`(`ϕ0`(tt), 0)], [0]) (6)
 

>  
 

The expressions of   a? and  ??  are calculated in the forms :   a?  =  μ <   >  =  [12] 

??  =   μ <  >   =                                        [13]  

 

The steady state solution occurs when   a0  =  0  or  a0  =  2     If   a0  =  0  then  x =   x?  =  0   this is a  trivial solution ( equilibrium   ) .  If   a0  =  2   then x =   2cos?  and  x?  = -2sin? .                                                                                                          [14] The necessary and sufficient condition for solution stability includes a?  = da/dt  =  Ψ(a)   with   Ψ(ao)  =  0  and   Ψ?(ao)  <  0                                 

>
 

Typesetting:-mprintslash([`assign`(Psi(a), `+`(`-`(`*`(`/`(1, 8), `*`(a, `*`(mu, `*`(`+`(`-`(4), `*`(`^`(a, 2))))))))))], [`+`(`-`(`*`(`/`(1, 8), `*`(a, `*`(mu, `*`(`+`(`-`(4), `*`(`^`(a, 2)))))))))]) (7)
 

>
 

 

 

Typesetting:-mprintslash([`assign`(DaohamcuaPsi(a), `+`(`*`(`/`(1, 2), `*`(mu)), `-`(`*`(`/`(3, 8), `*`(`^`(a, 2), `*`(mu))))))], [`+`(`*`(`/`(1, 2), `*`(mu)), `-`(`*`(`/`(3, 8), `*`(`^`(a, 2), `*`(mu...
Dao ham cua ham a'(t) la : (8)
 

> subs(a=2,DaohamcuaPsi(a));
 

> print("Gia tri cua a''(t) tai a = 2 la : a''(2) = ",subs(a=2,DaohamcuaPsi(a)));
 

> subs(a=0,DaohamcuaPsi(a));
 

> print("Gia tri cua a''(t) tai a = 0 la : a''(0) = ",subs(a=0,DaohamcuaPsi(a)));
 

 

 

 

 

 

 

`+`(`-`(mu))
Gia tri cua a''(t) tai a = 2 la : a''(2) =
`+`(`*`(`/`(1, 2), `*`(mu)))
Gia tri cua a''(t) tai a = 0 la : a''(0) = (9)
 

>  
 

Thus  if   ao   =  0  ,    a?(0) =      then  the solution is not stable  .  

If   ao   =  0  ,    a?(0) =    then  the solution is stable asymtotically. 

 

Note  :  By solving  the equation ( 12 ) for the vibration  amplitude a(t) ( ? slowly varying  coefficients ? ) then finding the solution expression x(t)  of  Van Der Pol differential equation , we get   

> a0(tt);
 

> diff_eq:= diff(a(t),t)=-mu*a(t)*(-4+(a(t)^2))/8;
 

> init_con:=a(0)=ao;biendo:=[dsolve({diff_eq,init_con}, {a(t)})];
 

> x:=biendo[1]*cos(phi);
 

 

 

 

 

 

 

 

 

`+`(`-`(`*`(`/`(1, 8), `*`(a, `*`(mu, `*`(`+`(`-`(4), `*`(`^`(a, 2)))))))))
Typesetting:-mprintslash([`assign`(diff_eq, diff(a(t), t) = `+`(`-`(`*`(`/`(1, 8), `*`(mu, `*`(a(t), `*`(`+`(`-`(4), `*`(`^`(a(t), 2))))))))))], [diff(a(t), t) = `+`(`-`(`*`(`/`(1, 8), `*`(mu, `*`(a(t...
Typesetting:-mprintslash([`assign`(init_con, a(0) = ao)], [a(0) = ao])
Typesetting:-mprintslash([`assign`(biendo, [a(t) = `+`(`/`(`*`(2, `*`(ao)), `*`(`^`(`+`(`*`(`^`(ao, 2)), `*`(4, `*`(exp(`+`(`-`(`*`(mu, `*`(t))))))), `-`(`*`(exp(`+`(`-`(`*`(mu, `*`(t))))), `*`(`^`(ao...
Typesetting:-mprintslash([`assign`(x, `*`(cos(phi), `*`(a(t))) = `+`(`/`(`*`(2, `*`(cos(phi), `*`(ao))), `*`(`^`(`+`(`*`(`^`(ao, 2)), `*`(4, `*`(exp(`+`(`-`(`*`(mu, `*`(t))))))), `-`(`*`(exp(`+`(`-`(`... (10)
 

>
 

                             with     ?  =  t  +  γ  .                                                                                                                 [15]                                    

>
 

Typesetting:-mprintslash([`assign`(x, proc (t) options operator, arrow; `+`(`/`(`*`(2, `*`(cos(`+`(t, gamma)))), `*`(sqrt(`/`(`*`(`+`(`*`(`^`(a, 2)), `-`(`*`(`^`(a, 2), `*`(exp(`+`(`-`(`*`(mu, `*`(t))... (11)
 

>
 

Warning, the previous bindings of the names RationalCanonicalForm and adjoint have been removed and they now have an assigned value  
 

> with(plots):a:=0.5;y:=t->2*cos(t + gamma)/sqrt((a^2-a^2*exp(-0.1*t)+4*exp(-0.1*t))/a^2);
 

> plot(y(t),t=0..4*Pi);
 

> animate(plot,[2*cos(x*t + gamma)/sqrt((a^2-a^2*exp(-0.1*t)+4*exp(-0.1*t))/a^2),x=0..4*t],t=0..Pi,frames=100 );
 

 

 

 

 

 

 

Typesetting:-mprintslash([`assign`(a, .5)], [.5])
Typesetting:-mprintslash([`assign`(y, proc (t) options operator, arrow; `+`(`/`(`*`(2, `*`(cos(`+`(t, gamma)))), `*`(sqrt(`/`(`*`(`+`(`*`(`^`(a, 2)), `-`(`*`(`^`(a, 2), `*`(exp(`+`(`-`(`*`(.1, `*`(t))...
Plot_2d
Plot_2d  
 

>  
 

Use graphical method to consider the solution stability of  Van Der Pol's  differential equation : 

> restart;with(DEtools):mu:=0.5;
 

> DEplot({(D@@2)(x)(t)+x(t)-mu*(1-x(t)^2)*D(x)(t)=0},{x(t)},t=-10..50,[[x(0)=1,D(x)(0)=1]],stepsize=0.05,title=`Nghiem on dinh cua pt Van Der Pol`);
 

 

 

Typesetting:-mprintslash([`assign`(mu, .5)], [.5])
Plot_2d  
 

>  
 

3 . Conclusion .  From  graphical results , we reach to conclusion that  the steady state solution stability of Van Der Pol's  diffential equation must be  precise  and estimating the property of solution obtained is very necessary . As presented  above , we might also use the normalization to ( 2 )  by determining the non-trivial solution in the form  

                                                                                        [16]                                                                  

 

with    k  =  1 Otherwise     Substitute   x ?  to  ( 6 )  after simplifying it follows :
 

 

 

>
 

> f:=vector([[0], [mu*F]]);
 

> V:=linsolve(A,f);
 

 

 

 

 

 

 

 

 

Warning, the name GramSchmidt has been rebound
Warning, the protected names norm and trace have been redefined and unprotected
(12)
 

>  
 

We rewrite the expressions  of                  M?     =                                                                           N?      =                                                                                                        [17]      

With    

 

Use averaging method for  ( 17 )  we get  :  

 

M ?  =  μ <- Fsint >  =    

N?  =   μ <  Fcost >  =                                                                             [18]    

 

The steady state solution exists when  M = 0   and    N = 0 ( trivial solution )                                        Or            M =  2   or  M = -2    and   N =  0 

Thus    x  =   2cost   , x  = 2cost                                           If   M =  0  and   N  = 0    or     N  =  4      Then     x  =   4sint   The steady state solutions can be formed generally   :  

      `or`(x = `+`(`*`(2, `*`(cost)), `*`(4, `*`(sint))), x = `+`(`-`(`*`(2, `*`(cost))), `*`(4, `*`(sint)))) 

 

But these forms are equivalent to   x =   2cos?       [ see  ( 14 )  ] 

 

Next we begin with   Krylov ? Bogoliubov approximate method for the Van der Pol's  differential equation   

 

 

 

with   ) x '       ,  and  μ  is a small constant  .    

 

The solution will be estimated  by     x  =  r(t) cos?(t)       

 

               By taking the first order approximate terms  ( neglecting the second and third order errors  of  constant   μ )  we can find the amplitude r(t) and the global phase function ?(t) from the following system  

                                               [19]     

 

If the initial condition   r(0) = ro  is satisfied  then the solution of  ( 15 )  will be equivalent to the solution of second order linear differential equation   

 

[20] 

 

with the error of estimation based on the order of     

 

The first order approximate is noticeable in the case of periodic vibration , because  the equivalent linear differential equation  gives us the accumulation and dissipation of energy based on vibration period which we might obtain from the given non-linear differential equation .  Therefore it is useful to apply the equivalent second linear differential equation to observe the non-linear resonant phenomenon  .REFERENCES  

[1] Menh .C. Nguyen   , Dao dong phi tuyen  , Manuscript  , Vien Co hoc , Hanoi 2002 . [2] Korn . G , Korn . T ., So tay toan hoc , Trans Vietnamese , NXB DH-THCN , Hanoi 1978 

 

 

_______________________________________________________________________________________________ 

 

 

 

Legal Notice:   Maplesoft, a division of Waterloo Maple Inc. 2009. Maplesoft and Maple are trademarks of Waterloo Maple Inc. Neither Maplesoft nor the authors are responsible for any errors contained within and are not liable for any damages resulting from the use of this material.  This application is intended for non-commercial, non-profit use only. Contact the authors for permission if you wish to use this application in for-profit activities.