Relaxation Functions and Relaxation Spectra
Univ.-Prof. Dr.-Ing. habil. Josef BETTEN
RWTH Aachen University
Mathematical Models in Materials Science and Continuum Mechanics
Augustinerbach 4-20
D-52080 A a c h e n , Germany
<betten@mmw.rwth-aachen.de>
Abstract
This worksheet is concerned with the relaxation behaviour of viscoelastic materials. Many materials exibit both features of elastic solids and characteristics of viscous fluids. Such materials are called viscoelastic. One of the main features of elastic behaviour is the capacity for materials to store mechanical energy when deformed by loading, and to set free this energy completely after removing the load. In viscous flow, however, mechanical energy is continuously and totally dissipated.
The phenomenological behaviour of viscoelastic materials can be illustrated by spring-dashpot
models consisting of several elastic springs and viscous dashpots in parallel or in series.
In the following some examples should be discussed in more detail based upon the fundamental
rheological model of MAXWELL. Furthermore, nonlinearities are taken into account.
Keywords: Relaxation Functions and Relaxation Spectra; POYNTING - THOMSON Model; Distributions by POISSON, MAXWELL, Chi-square, WEIBULL; Nonlinearities
Relaxation Function of the POYNTING - THOMSON Model
This model consists of one linear spring (HOOKE) and one MAXWELL model in parallel, where the MAXWELL element is characterized by one linear spring (HOOKE) and one linear dashpot (NEWTON) connected in series. Thus, the POYNTING - THOMSON model has three parameters, two elastic constants and one viscous parameter and is characterized by the following relaxation function:
> |
E(t):=sigma(t)/epsilon[0]=E[infinity]+E[1]*exp(-t/lambda[1]); |
![`assign`(E(t), `/`(`*`(sigma(t)), `*`(epsilon[0])) = `+`(E[infinity], `*`(E[1], `*`(exp(`+`(`-`(`/`(`*`(t), `*`(lambda[1])))))))))](/view.aspx?SI=34637/0/images/Relaxation_Functions_1.gif) |
(1) |
containing the three parameters
> |
E[infinity]:=sigma(infinity)/epsilon[0]; E[1]:=(sigma(0)-sigma(infinity))/epsilon[0]; lambda[1]:=eta[1]/E[1]; |
![`assign`(E[infinity], `/`(`*`(sigma(infinity)), `*`(epsilon[0])))](/view.aspx?SI=34637/0/images/Relaxation_Functions_2.gif) |
(2) |
![`assign`(E[1], `/`(`*`(`+`(sigma(0), `-`(sigma(infinity)))), `*`(epsilon[0])))](/view.aspx?SI=34637/0/images/Relaxation_Functions_3.gif) |
(2) |
![`assign`(lambda[1], `/`(`*`(eta[1], `*`(epsilon[0])), `*`(`+`(sigma(0), `-`(sigma(infinity))))))](/view.aspx?SI=34637/0/images/Relaxation_Functions_4.gif) |
(2) |
Substituting the constant strain epsilon[0] in the above relaxation function by epsilon[0]*H(t), we arrive at the representation
> |
sigma(t):=epsilon[0]*H(t)*E(t); |
![`assign`(sigma(t), `*`(epsilon[0], `*`(H(t), `*`(E(t)))))](/view.aspx?SI=34637/0/images/Relaxation_Functions_5.gif) |
(3) |
For a constant strain epsilon[0] within an interval t = [a, b] the response can be expressed as
> |
sigma(t):=epsilon[0]*(H(t-a)-H(t-b))*E(t-a); |
![`assign`(sigma(t), `*`(epsilon[0], `*`(`+`(H(`+`(t, `-`(a))), `-`(H(`+`(t, `-`(b))))), `*`(E(`+`(t, `-`(a)))))))](/view.aspx?SI=34637/0/images/Relaxation_Functions_6.gif) |
(4) |
where H(t) or H(t - a) is the HEAVISIDE unit step function. This response function is illustrated
in the following Figure.
> |
alias(H=Heaviside,th=thickness,co=color): |
> |
p[1]:=plot(H(t-1)-H(t-6),t=0..7,0..1,co=black, title="Relaxation of the POYNTING - THOMSON Model"): |
> |
p[2]:=plot((H(t-1)-H(t-6))*(0.2+0.8*exp(-(t-1)/2)), t=0..7,th=3,co=black): |
> |
p[3]:=plots[textplot]({[3.6,0.95,`constant strain`], [4,0.54,`response`]},co=black): |
> |
plots[display](seq(p[k],k=1..3)); |
The POYNTING - THOMSON model is subjected to a constant strain of height one in t = [1, 6]. Parameters are: epsilon[0] = 1, E[infinity] = 0.2, E[1] = 0.8, so that sigma[0] = 1.
Supplementing the POYNTING - THOMSON model by further MAXWELL elements we arrive at the following generalized relaxation function:
> |
E(t):=E[infinity]+Sum(E[k]*exp(-t/lambda[k]),k=1..n); |
![`assign`(E(t), `+`(E[infinity], Sum(`*`(E[k], `*`(exp(`+`(`-`(`/`(`*`(t), `*`(lambda[k]))))))), k = 1 .. n)))](/view.aspx?SI=34637/0/images/Relaxation_Functions_8.gif) |
(5) |
where E[k] are the spring constants of several MAXWELL elements, while lambda[k] = eta[k] / E[k] represents the corrosponding relaxation times. Analogous to the discrete creep spectrum (BETTEN, 2008), the values (lambda[k], E[k]) form a discrete relaxation spectrum. The parameter E(infinity) can be interpreted as the long-time equilibrium value of the relaxation modulus E(t). The number of MAXWELL elements may increase indefinitely (n --> infinity). Then the discrete relaxation spectrum proceeds to a continuous one, h = h(lambda). The relaxation function results for n --> infinity in the integral form
> |
restart: macro(la=lambda,inf=infinity): |
> |
E(t):=E[inf]+beta*Int(h(la)*exp(-t/la),la=0..inf); |
![`assign`(E(t), `+`(E[infinity], `*`(beta, `*`(Int(`*`(h(lambda), `*`(exp(`+`(`-`(`/`(`*`(t), `*`(lambda))))))), lambda = 0 .. infinity)))))](/view.aspx?SI=34637/0/images/Relaxation_Functions_9.gif) |
(6) |
where the parameter beta can be determined from E(0) by assuming normalized relaxation spectra,
> |
Int(h(la),la=0..inf)=1; |
 |
(7) |
according to
![`assign`(beta, `+`(E[0], `-`(E[infinity])))](/view.aspx?SI=34637/0/images/Relaxation_Functions_11.gif) |
(8) |
Hence, the relaxation function is represented in the following dimensionless form with R(0) = 1:
> |
restart: macro(la=lambda,inf=infinity): |
> |
R(t):=(E(t)-E[inf])/(E[0]-E[inf])= Int(h(la)*exp(-t/la),la=0..inf); |
![`assign`(R(t), `/`(`*`(`+`(E(t), `-`(E[infinity]))), `*`(`+`(E[0], `-`(E[infinity])))) = Int(`*`(h(lambda), `*`(exp(`+`(`-`(`/`(`*`(t), `*`(lambda))))))), lambda = 0 .. infinity))](/view.aspx?SI=34637/0/images/Relaxation_Functions_12.gif) |
(9) |
For the sake of convenience, the integral on the right hand side can be solved by utilizing
a LAPLACE transformation. Thus, we introduce the substitution 1 / lambda = xi and
arrive at the result:
> |
restart: macro(la=lambda,inf=infinity): |
> |
R(t):=Int((h(la=1/xi)/xi^2)*exp(-t*xi),xi=0..inf)=L(H(xi)); |
 |
(10) |
where L{H(xi)} is the LAPLACE transform of the function
> |
H(xi):=(1/xi^2)*h(lambda=1/xi); |
 |
(11) |
In the following some examples should be discussed. At first we select the POISSON distributions as relaxation spectra:
> |
restart: macro(la=lambda,inf=infinity): |
> |
h[1](la,n):=la^n*exp(-la)/n!; # n = 0,1,2,... |
, `/`(`*`(`^`(lambda, n), `*`(exp(`+`(`-`(lambda))))), `*`(factorial(n))))](/view.aspx?SI=34637/0/images/Relaxation_Functions_15.gif) |
(12) |
> |
for i from 0 to 3 do h[1](la,i):=subs(n=i,h[1](la,n)) od: |
> |
alias(th=thickness,co=color): |
> |
p[1]:=plot({seq(h[1](la,n),n=0..3)},la=0..5,0..1, th=3,co=black,axes=boxed, title="POISSON Distributions"): |
> |
p[2]:=plots[textplot]({[0.75,0.8,`n = 0`],[1.5,0.4,`n = 1`], [2.5,0.3,`n = 2`],[4,0.25,`n = 3`]},co=black): |
> |
plots[display](seq(p[k],k=1..2)); |
Because of
> |
Diff(h[1],la)=simplify(diff(h[1](la,n),la)); |
![Diff(h[1], lambda) = `/`(`*`(`^`(lambda, `+`(n, `-`(1))), `*`(exp(`+`(`-`(lambda))), `*`(`+`(n, `-`(lambda))))), `*`(factorial(n)))](/view.aspx?SI=34637/0/images/Relaxation_Functions_17.gif) |
(13) |
the curves in the above Figure possess a maximum at lambda = n > 0.
From the relaxation spectra, illustrated in the above Figure, we find the relaxation functions E(t, n) in dimensionless form
> |
R(t,n):=(E(t,n)-E[inf])/(E[0]-E[inf]); |
![`assign`(R(t, n), `/`(`*`(`+`(E(t, n), `-`(E[infinity]))), `*`(`+`(E[0], `-`(E[infinity])))))](/view.aspx?SI=34637/0/images/Relaxation_Functions_18.gif) |
(14) |
by utilizing the following MAPLE program including the LAPLACE transform.
> |
H[1](xi,n):=subs(la=1/xi,h[1](la,n))/xi^2; |
, `/`(`*`(`^`(`/`(1, `*`(xi)), n), `*`(exp(`+`(`-`(`/`(1, `*`(xi))))))), `*`(factorial(n), `*`(`^`(xi, 2)))))](/view.aspx?SI=34637/0/images/Relaxation_Functions_19.gif) |
(15) |
> |
R(t,n):=laplace(H[1](xi,n),xi,t); |
 |
(16) |
> |
for i in [0,1,2,3] do R(t,n=i):=subs(n=i,R(t,n)) od: |
> |
p[1]:=plot({seq(R(t,n=i),i=0..3)},t=0..5,0..1, th=3,axes=boxed,co=black, title="Relaxation Functions R(t, n)"): |
> |
p[2]:=plots[textplot]({[1.5,0.78,`n = 3`], [1.5,0.1,`n = 0`]},co=black): |
> |
plots[display](seq(p[k],k=1..2)); |
The POISSON distribution is normalized as we can immediately see by considering
the gamma function
> |
Gamma(n):=Int(la^(n-1)*exp(-la),la=0..inf); Gamma(n+1):=n!; |
 |
(17) |
 |
(17) |
If we substitute (n - 1) for n , the POISSON distribution proceeds to the gamma function.
The second example is concerned with the MAXWELL distribution function
> |
h[2](la,a):=(a/2/sqrt(Pi)/(la^(3/2))*exp(-(a^2/4/la))); |
, `+`(`*`(`/`(1, 2), `*`(`/`(`*`(a, `*`(exp(`+`(`-`(`/`(`*`(`^`(a, 2)), `*`(4, `*`(lambda)))))))), `*`(`^`(Pi, `/`(1, 2)), `*`(`^`(lambda, `/`(3, 2)))))))))](/view.aspx?SI=34637/0/images/Relaxation_Functions_24.gif) |
(18) |
which is normalized and therefore admissible. This spectrum has been calculated by the
following MAPLE program.
> |
for i in [3/4,1,3/2] do h[2](la,i):=subs(a=i,h[2](la,a)) od: |
> |
p[1]:=plot({h[2](la,3/4),h[2](la,1),h[2](la,3/2)}, la=0..1,0..1.75,th=3,co=black,axes=boxed, title="MAXWELL Distributions as Relaxation Spectra"): |
> |
p[2]:=plots[textplot]({[0.3,1.2,`a = 3/4`],[0.15,0.6,`a = 1`], [0.3,0.3,`a = 3/2`]},ytickmarks=4,co=black): |
> |
plots[display](seq(p[k],k=1..2)); |
Because of
> |
Diff(h[2],la)=simplify(diff(h[2](la,a),la)); |
![Diff(h[2], lambda) = `+`(`*`(`/`(1, 8), `*`(`/`(`*`(a, `*`(exp(`+`(`-`(`/`(`*`(`^`(a, 2)), `*`(4, `*`(lambda)))))), `*`(`+`(`-`(`*`(6, `*`(lambda))), `*`(`^`(a, 2)))))), `*`(`^`(Pi, `/`(1, 2)), `*`(`^...](/view.aspx?SI=34637/0/images/Relaxation_Functions_26.gif) |
(19) |
the MAXWELL distributions possess a maximum at the position lambda = (1/6)*a^2.
The associated relaxation functions E(t, a) in dimensionless form have been calculated
by utilizing the following MAPLE program including the LAPLACE transform.
> |
H[2](xi):=subs(la=1/xi,h[2](la,a))/xi^2; |
, `+`(`*`(`/`(1, 2), `*`(`/`(`*`(a, `*`(exp(`+`(`-`(`/`(`*`(`^`(a, 2), `*`(xi)), `*`(4))))))), `*`(`^`(Pi, `/`(1, 2)), `*`(`^`(`/`(1, `*`(xi)), `/`(3, 2)), `*`(`^`(xi, 2)))))))))](/view.aspx?SI=34637/0/images/Relaxation_Functions_27.gif) |
(20) |
> |
R(t,a):=laplace(H[2](xi),xi,t); |
 |
(21) |
> |
for i in [3/4,1,3/2] do R(t,i):=subs(a=i,R(t,a)) od: |
> |
p[1]:=plot({R(t,3/4),R(t,1),R(t,3/2)},t=0..5,0..1, th=3,co=black, title="Relaxation Functions R(t, a)"): |
> |
p[2]:=plots[textplot]({[1,0.76,`a = 3/2`], [1.1,0.5,`1`],[1,0.25,`a = 3/4`]},co=black,axes=boxed): |
> |
plots[display](seq(p[k],k=1..2)); |
The third example takes into consideration the Chi-square distripution used as relaxation spectra. This distribution is also normalized and therefore admissible.
> |
restart: macro(la=lambda,inf=infinity): |
> |
X:=RandomVariable(ChiSquare(n)): |
> |
h[3](la,n):=PDF(X,la) assuming la >= 0; # Probability Density Function |
, `/`(`*`(`^`(lambda, `+`(`/`(`*`(n), `*`(2)), `-`(1))), `*`(exp(`+`(`-`(`/`(`*`(lambda), `*`(2))))))), `*`(`^`(2, `+`(`/`(`*`(n), `*`(2)))), `*`(GAMMA(`+`(`/`(`*`(n), `*`(2)))...](/view.aspx?SI=34637/0/images/Relaxation_Functions_30.gif) |
(22) |
> |
Int(h[3],la=0..inf)=int(h[3](la,n),la=0..inf); |
![Int(h[3], lambda = 0 .. infinity) = 1](/view.aspx?SI=34637/0/images/Relaxation_Functions_31.gif) |
(23) |
The Chi-square distributions are used as relaxation spectra and illustrated for several
parameters n in the following Figure.
> |
for i in [2,3,4] do h[3](la,i):=subs(n=i,h[3](la,n)) od: |
> |
alias(th=thickness,co=color): |
> |
p[1]:=plot({seq(h[3](la,k),k=2..4)},la=0..5,0..0.5, th=3,co=black,axes=boxed, title="Chi-square Distributions used as relaxation Spectra"): |
> |
p[2]:=plots[textplot]({[1,0.4,`n = 2`], [2,0.25,`n = 3`],[4,0.18,`n = 4`]},co=black): |
> |
plots[display](seq(p[k],k=1..2)); |
The curves in this Figure with n > 2 possess a maximum at the position lambda = n - 2.
From the above relaxation spectra we arrive at the relaxation functions E(t, n) in dimensioless form
> |
R(t,n):=(E(t,n)-E[inf])/(E[0]-E[inf]); |
![`assign`(R(t, n), `/`(`*`(`+`(E(t, n), `-`(E[infinity]))), `*`(`+`(E[0], `-`(E[infinity])))))](/view.aspx?SI=34637/0/images/Relaxation_Functions_33.gif) |
(24) |
by utilizing the following MAPLE program including the LAPLACE transform .
> |
h[3](xi,n):=subs(la=1/xi,h[3](la,n))/xi^2; |
, `/`(`*`(`^`(`/`(1, `*`(xi)), `+`(`/`(`*`(n), `*`(2)), `-`(1))), `*`(exp(`+`(`-`(`/`(1, `*`(`*`(2, `*`(xi))))))))), `*`(`^`(2, `+`(`/`(`*`(n), `*`(2)))), `*`(GAMMA(`+`(`/`(`*`(n),...](/view.aspx?SI=34637/0/images/Relaxation_Functions_34.gif) |
(25) |
> |
R(t,n):=laplace(h[3](xi,n),xi,t); |
 |
(26) |
> |
for i in [2,3,4] do R(t,i):=subs(n=i,R(t,n)) od: |
> |
p[1]:=plot({seq(R(t,i),i=2..4)},t=0..5,0..1, th=3,axes=boxed,co=black, title="Relaxation Functions based upon the Chi-square Distributions"): |
> |
p[2]:=plots[textplot]({[1.5,0.7,`n = 4`], [1.5,0.25,`n = 2`]},co=black): |
> |
plots[display](seq(p[k],k=1..2)); |
> |
R(inf,n):=Limit(R(t,n),t=inf)=limit(R(t,n),t=inf); |
 |
(27) |
The normalized relaxation spectra lead to dimensionless relaxation functions with R(infinity, n) = 0.
The next example is concerned with relaxation functions based upon the WEIBULL distributions assumed as relaxation spectra. This distribution is characterized by two parameters (a, b), where a is the scale parameter, while b forms the shape of the curves.
> |
restart: macro(la=lambda,inf=infinity): with(Statistics): |
> |
X:=RandomVariable(Weibull(a,b)): |
> |
h[Weibull](la,a,b):=PDF(X,la); # PDF = Probability Density Function |
 |
(28) |
> |
h[4](la,a,3):=subs(b=3,%) assuming la>=0; |
, `+`(`/`(`*`(3, `*`(`^`(lambda, 2), `*`(exp(`+`(`-`(`/`(`*`(`^`(lambda, 3)), `*`(`^`(a, 3))))))))), `*`(`^`(a, 3)))))](/view.aspx?SI=34637/0/images/Relaxation_Functions_39.gif) |
(29) |
> |
Int(h[4],la=0..inf)=1; # normalized |
![Int(h[4], lambda = 0 .. infinity) = 1](/view.aspx?SI=34637/0/images/Relaxation_Functions_40.gif) |
(30) |
> |
for i in [1,2,3,4] do h[4](la,i,3):= subs(a=i,h[4](la,a,3)) od: |
> |
alias(th=thickness,co=color): |
> |
p[1]:=plot({seq(h[4](la,i,3),i=1..4)},la=0..5,0..1.2, ytickmarks=3,th=3,axes=boxed,co=black, title="WEIBULL Distributions"): |
> |
p[2]:=plots[textplot]({[1.5,1,`a = 1`],[2,0.65,`a = 2`], [3,0.45,`a = 3`],[4,0.35,`a = 4`],[4,1,`b = 3`]},co=black): |
> |
plots[display](seq(p[k],k=1..2)); |
Because of
> |
Diff(h[4],la)=simplify(diff(h[4](la,a,3),la)); |
![Diff(h[4], lambda) = `+`(`/`(`*`(3, `*`(lambda, `*`(exp(`+`(`-`(`/`(`*`(`^`(lambda, 3)), `*`(`^`(a, 3)))))), `*`(`+`(`*`(2, `*`(`^`(a, 3))), `-`(`*`(3, `*`(`^`(lambda, 3))))))))), `*`(`^`(a, 6))))](/view.aspx?SI=34637/0/images/Relaxation_Functions_42.gif) |
(31) |
the curves in the above Figure possess a maximum at lambda^3 = (2/3)*a^3 , i.e.:
> |
for i in [1,2,3,4] do la[opt](a=i):= evalf(subs(a=i,(2/3)^(1/3)*a),3) od; |
, .872)](/view.aspx?SI=34637/0/images/Relaxation_Functions_43.gif) |
(32) |
, 1.75)](/view.aspx?SI=34637/0/images/Relaxation_Functions_44.gif) |
(32) |
, 2.62)](/view.aspx?SI=34637/0/images/Relaxation_Functions_45.gif) |
(32) |
, 3.48)](/view.aspx?SI=34637/0/images/Relaxation_Functions_46.gif) |
(32) |
From the relaxation spectra illustrated in the above Figure we find the relaxation functions
E(t, a, 3) in dimensionless form
> |
R(t,a,3):=(E(t,a,3)-E[inf])/(E[0]-E[inf]); |
![`assign`(R(t, a, 3), `/`(`*`(`+`(E(t, a, 3), `-`(E[infinity]))), `*`(`+`(E[0], `-`(E[infinity])))))](/view.aspx?SI=34637/0/images/Relaxation_Functions_47.gif) |
(33) |
> |
R(t,a,3):=int(h[4](la,a,3)*exp(-t/la),la=0..inf); |
![`assign`(R(t, a, 3), `+`(`*`(`/`(1, 18), `*`(`/`(`*`(`^`(t, 2), `*`(`^`(3, `/`(1, 2)), `*`(MeijerG([[], []], [[`/`(1, 3), 0, -`/`(1, 3), -`/`(2, 3)], []], `+`(`/`(`*`(`^`(t, 3)), `*`(27, `*`(`^`(a, 3)...](/view.aspx?SI=34637/0/images/Relaxation_Functions_48.gif) |
(34) |
> |
for i from 1 to 4 do R(t,i,3):=subs(a=i,R(t,a,3)) od: |
> |
p[1]:=plot({seq(R(t,i,3),i=1..4)},t=0..5,0..1, thickness=3,axes=boxed,co=black, title="Relaxation Functions R(t, a, 3)"): |
> |
p[2]:=plots[textplot]({[1,0.85,`a = 4`], [1,0.2,`a = 1`],[3.5,0.85,`b = 3`]},co=black): |
> |
plots[display](p[1],p[2]); |
Nonlinearities
In the previous part several relaxation functions have been calculated by using linear rheological
elements due to MAXWELL. The relaxation of the MAXWELL body subjected to a constant strain
can be expressed by the relation
> |
sigma[MAXWELL](t):=epsilon[0]*E*exp(-t/lambda); |
, `*`(epsilon[0], `*`(E, `*`(exp(`+`(`-`(`/`(`*`(t), `*`(lambda)))))))))](/view.aspx?SI=34637/0/images/Relaxation_Functions_50.gif) |
(35) |
In contrast, the following part of this worksheet is concerned with the modified form
> |
sigma(t):=sigma[modified]=epsilon[0]*E*exp(-c*sqrt(t)); |
![`assign`(sigma(t), sigma[modified] = `*`(epsilon[0], `*`(E, `*`(exp(`+`(`-`(`*`(c, `*`(`^`(t, `/`(1, 2)))))))))))](/view.aspx?SI=34637/0/images/Relaxation_Functions_51.gif) |
(36) |
Because of the good agreement between the modified form, called sqrt(t)-law, and experimental
results, we assume that creep can be interpreted as a diffusion controlled process as has been discussed by BETTEN (2008) in more detail.
The sqrt(t)-law describes very well the relaxation of many materials, too. It can be successfully applied to several polymers, e.g., EVE-copolymers at room temperature. The use of PRONY-series was less successful as has been pointed out in more detail by BETTEN (2008). Furthermore, the relaxation of glass can be expressed by the sqrt(t)-law. AIMEDIEU (2004) has investigated the nonlinear relaxation of brain tissue and found very good agreement between the sqrt(t)-law and his own experiments. The use of PRONY-series was again less successful.
The number of modified MAXWELL elements may increase indefinitely (n --> infinity). Then the relaxation function in dimensionless form is given by
> |
restart: macro(la=lambda,inf=infinity): |
> |
N(t):=(E(t)-E[inf])/(E[0]-E[inf])= Int(h(la)*exp(-sqrt(t)/la),la=0..inf); |
![`assign`(N(t), `/`(`*`(`+`(E(t), `-`(E[infinity]))), `*`(`+`(E[0], `-`(E[infinity])))) = Int(`*`(h(lambda), `*`(exp(`+`(`-`(`/`(`*`(`^`(t, `/`(1, 2))), `*`(lambda))))))), lambda = 0 .. infinity))](/view.aspx?SI=34637/0/images/Relaxation_Functions_52.gif) |
(37) |
where h(lambda) are normalized relaxation spectra dicussed in more detail in the previous part
of this worksheet. In the following some examples should be discussed. At first we select the
POISSON distributions as relaxation spectra and find the following modified relaxation functions:
> |
restart: macro(la=lambda,inf=infinity): |
> |
h[1](la,n):=la^n*exp(-la)/n!; |
, `/`(`*`(`^`(lambda, n), `*`(exp(`+`(`-`(lambda))))), `*`(factorial(n))))](/view.aspx?SI=34637/0/images/Relaxation_Functions_53.gif) |
(38) |
> |
N(t,n):=int(h[1](la,n)*exp(-sqrt(t)/la),la=0..inf); |
 |
(39) |
> |
for i in [0,1,2,3] do N(t,n=i):=subs(n=i,N(t,n)) od: |
> |
alias(th=thickness,co=color): |
> |
p[1]:=plot({seq(N(t,n=i),i=0..3)},t=0..5,0..1, th=3,axes=boxed,co=black, title="Modified Relaxation Functions N(t, n)"): |
> |
p[2]:=plots[textplot]({[1.55,0.78,`n = 3`], [1.55,0.17,`n = 0`]},co=black): |
> |
plots[display](seq(p[k],k=1..2)); |
In contrast to the preveous relaxation functions R(t, n) the modified functions N(t, n) have
a vertical tangent at the beginning t = 0, which can often be observed in experiments on
several materials (BETTEN , 2008).
In the following Figure the relaxation functions R(t, n) and N(t, n) have been compared.
> |
R(t,n):=2*t^(1/2+n/2)*BesselK(n+1,2*sqrt(t))/n! ; # linear theory |
 |
(40) |
> |
for i in [0,3] do R(t,n=i):=subs(n=i,R(t,n)) od; |
 |
(41) |
 |
(41) |
> |
N(t,n):=2*t^(1/4+n/4)*BesselK(n+1,2*t^(1/4))/n! ; # non-linear theory |
 |
(42) |
> |
for i in [0,3] do N(t,n=i):=subs(n=i,N(t,n)) od; |
 |
(43) |
 |
(43) |
> |
alias(th=thickness,co=color): |
> |
p[1]:=plot({R(t,n=0),R(t,n=3)},t=0..5,0..1, linestyle=4,th=3,axes=boxed,co=black): |
> |
p[2]:=plot({N(t,n=0),N(t,n=3)},t=0..5,0..1,th=3,co=black, title=" Linear and Non-linear Theory"): |
> |
p[3]:=plots[textplot]({[1,0.9,`n = 3`], [1,0.45,`n = 0`]},co=black): |
> |
plots[display](seq(p[k],k=1..3)); |
In this Figure the linear theory is characterized by dashed lines, while the solid lines belong
to the non-linear theory.
The next example is concerned with finding the modified relaxation functions based upon the
WEIBULL distributions assumed as relaxation spectra.
> |
restart: macro(la=lambda,inf=infinity): |
> |
h[4](la,a,3):=3*la^2*exp(-la^3/a^3)/a^3; |
, `+`(`/`(`*`(3, `*`(`^`(lambda, 2), `*`(exp(`+`(`-`(`/`(`*`(`^`(lambda, 3)), `*`(`^`(a, 3))))))))), `*`(`^`(a, 3)))))](/view.aspx?SI=34637/0/images/Relaxation_Functions_63.gif) |
(44) |
> |
N(t,a,3):=int(h[4](la,a,3)*exp(-sqrt(t)/la),la=0..inf); # non-linear theory |
![`assign`(N(t, a, 3), `+`(`*`(`/`(1, 18), `*`(`/`(`*`(t, `*`(`^`(3, `/`(1, 2)), `*`(MeijerG([[], []], [[`/`(1, 3), 0, -`/`(1, 3), -`/`(2, 3)], []], `+`(`/`(`*`(`^`(t, `/`(3, 2))), `*`(27, `*`(`^`(a, 3)...](/view.aspx?SI=34637/0/images/Relaxation_Functions_64.gif) |
(45) |
> |
for i from 1 to 4 do N(t,i,3):=subs(a=i,N(t,a,3)) od: |
> |
alias(th=thickness,co=color): |
> |
p[1]:=plot({seq(N(t,i,3),i=1..4)},t=0..5,0..1, th=3,axes=boxed,co=black, title="Modified Relaxation Functions N(t, a, 3)"): |
> |
p[2]:=plots[textplot]({[1,0.82,`a = 4`],[1,0.45,`a = 2`], [1,0.2,`a = 1`],[4,0.9,`b = 3`]},co=black): |
> |
plots[display](seq(p[k],k=1..2)); |
In contrast to the previous relaxation functions R(t, a, 3) the modified functions N(t, a, 3)
have a vertical tangent at the beginning t = 0, which can often be observed in experiments
on several materials, e.g. EVE copolymers (BLOK, 2006) and many other materials (BETTEN, 2008).
In the following Figure the relaxation functions R(t, a, 3) and N(t, a, 3) have been compared.
> |
R(t,a,3):=t^2*sqrt(3)*MeijerG([[],[]],[[1/3,0,-1/3,-2/3],[]], t^3/27/a^3)/18/a^3/Pi/(1/a^3)^(1/3); # linear theory |
![`assign`(R(t, a, 3), `+`(`*`(`/`(1, 18), `*`(`/`(`*`(`^`(t, 2), `*`(`^`(3, `/`(1, 2)), `*`(MeijerG([[], []], [[`/`(1, 3), 0, -`/`(1, 3), -`/`(2, 3)], []], `+`(`/`(`*`(`^`(t, 3)), `*`(27, `*`(`^`(a, 3)...](/view.aspx?SI=34637/0/images/Relaxation_Functions_66.gif) |
(46) |
> |
for i in [1,4] do R(t,i,3):=subs(a=i,R(t,a,3)) od; |
![`assign`(R(t, 1, 3), `+`(`*`(`/`(1, 18), `*`(`/`(`*`(`^`(t, 2), `*`(`^`(3, `/`(1, 2)), `*`(MeijerG([[], []], [[`/`(1, 3), 0, -`/`(1, 3), -`/`(2, 3)], []], `+`(`/`(`*`(`^`(t, 3)), `*`(27))))))), `*`(Pi...](/view.aspx?SI=34637/0/images/Relaxation_Functions_67.gif) |
(47) |
![`assign`(R(t, 4, 3), `+`(`*`(`/`(1, 1152), `*`(`/`(`*`(`^`(t, 2), `*`(`^`(3, `/`(1, 2)), `*`(MeijerG([[], []], [[`/`(1, 3), 0, -`/`(1, 3), -`/`(2, 3)], []], `+`(`/`(`*`(`^`(t, 3)), `*`(1728)))), `*`(`...](/view.aspx?SI=34637/0/images/Relaxation_Functions_68.gif) |
(47) |
non-linear theory:
> |
for i in [1,4] do N(t,i,3):=subs(a=i,N(t,a,3)) od; # non-linear theory |
![`assign`(N(t, 1, 3), `+`(`*`(`/`(1, 18), `*`(`/`(`*`(t, `*`(`^`(3, `/`(1, 2)), `*`(MeijerG([[], []], [[`/`(1, 3), 0, -`/`(1, 3), -`/`(2, 3)], []], `+`(`/`(`*`(`^`(t, `/`(3, 2))), `*`(27))))))), `*`(Pi...](/view.aspx?SI=34637/0/images/Relaxation_Functions_69.gif) |
(48) |
![`assign`(N(t, 4, 3), `+`(`*`(`/`(1, 1152), `*`(`/`(`*`(t, `*`(`^`(3, `/`(1, 2)), `*`(`^`(64, `/`(1, 3)), `*`(MeijerG([[], []], [[`/`(1, 3), 0, -`/`(1, 3), -`/`(2, 3)], []], `+`(`/`(`*`(`^`(t, `/`(3, 2...](/view.aspx?SI=34637/0/images/Relaxation_Functions_70.gif) |
(48) |
> |
p[1]:=plot({R(t,1,3),R(t,4,3)},t=0..5,0..1, linestyle=4,th=3,axes=boxed,co=black): |
> |
p[2]:=plot({N(t,1,3),N(t,4,3)},t=0..5,0..1,th=3,co=black, title="Linear and Non-linear Theory"): |
> |
p[3]:=plots[textplot]({[1,0.85,`a = 4`], [1,0.5,`a = 1`],[4,0.9,`b = 3`]},co=black): |
> |
plots[display](seq(p[k],k=1..3)); |
Experiments
Based upon a lot of experiments on glas, SCHERER (1986) has shown that both the stress
and structural relaxation in glass can be predicted by the relation
> |
r(t):=exp(-(t/lambda)^b); |
 |
(49) |
often called KOHLRAUSCH function or b-function, which is a modified form of the
MAXWELL relaxation function. The exponent b in the above relation was found to be
near the value of b = 0.5, so that the assumption of the sqrt(t)-law is justified. However,
the above relation is valid only for stabilized glass, i.e., the glass is held at a given
temperature until its properties do no longer change with time. Then the load can be
applied.
In unstabilized glasses the viscosity and other typical properties, e.g. the density,
vary with time. Then, the above relaxation function should be replaced by the formular
> |
r(t):=exp(-(Int(G[0]/eta(tau),tau=0..t)^b)); |
![`assign`(r(t), exp(`+`(`-`(`^`(Int(`/`(`*`(G[0]), `*`(eta(tau))), tau = 0 .. t), b)))))](/view.aspx?SI=34637/0/images/Relaxation_Functions_73.gif) |
(50) |
where, in agreement with experimental results, the exponent b can again be assumed
near to b = 0.5 , as has been discussed in more detail by SCHERER (1986).
AIMEDIEU (2004) has investigated the nonlinear relaxation of brain tissue and found
very good agreement between the sqrt(t)-law and his own experiments. The use of PRONY
series was less succesful.
Conclusion
The examples in this worksheet are concerned with the representation of relaxation curves for both the linear and non-linear theory. The linear theory is based upon linear rheological elements due to MAXWELL , while the non-linear theory is characterized by the sqrt(t)-law.
Besides very good agreement with experimental results, the sqrt(t)-law has a physical meaning,
as has been discussed by BETTEN (2008) in more detail.
References
AIMEDIEU, P. (2004). Contributation ? la biom?canique de tissues mous intr?craniens, PhD Thesis of the Universit? de Picardie Jules Vernes, Faculte de medicine, Amiens Cedex, France. BETTEN, J.(2008). Creep Mechanics, 3rd Edition, Springer-Verlag, Berlin / Heidelberg .
BLOK, A. (2006). Vergleich rheologischer Modelle zum Kriechverhalten eines EVA-Copolymers, Presentation on the occation of doctorial examination, RWTH Aachen University.
SCHERER, G. (1986). Rlaxation in Glass and Composites, John Wiley & Sohn, New York...