FRACTURE PROPAGATION IN
THE INTERNAL PRESSURIZED VESSEL .
by CO. H . TRAN .
MMPC HCMC
Vietnam coth123@math.com & cohtran@math.com Copyright 2009 November 06 2009 -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ** Abstract :
-Calculating the maximum value Pmax that causes the fracture propagation while applying the internal static pressure . -Evaluating the time-limit for applying the continous / discrete form of internal dynamic pressure for the round metal vessel under conditions given by series expansion and curve -fitting method . ** Subjects: Fracture Mechanics , The stress intensity factor KI .
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------Introduction This worksheet demonstrates Maple's capabilities in estimating the maximum pressure and the time-limit for applying static or dynamic pressure on the surface of a round metal vessel which has an internal semi-elliptical surface crack . All rights reserved. Copying or transmitting of this material without the permission of the authors is not allowed .
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
1. Modeling the problem
We consider the round metal vessel with parameters given :
a : one-half crack depth (mm) ; B : thickness of vessel cm) ; c : one-half crack length (mm) ; d : internal diameter(m) ; P : internal pressure (MPa) .

2. Technical basis and calculation formulas
Depending on the principle of superposition , the total stress intensity factor will be determined by :
=
After calculating ,
can be rewritten in the form :
Use the formulas of hoop stress :
and
, we find the value of correction factor α , consequently it gives the total stress intensity
. Because the critical crack length is defined by :
we may conclude that the maximum crack length has a interactive relation with the stress intensity factor
.
Following is the table which shows temperature mechanical properties for some materials used in engineering design .
Table 1.
3. Construct algorithms for applications
Here the author will present two procedures that are used to calculate the maximum pressure ( Pmax ) causing the fracture propagation and estimate the limitation of time while applying the continous or discrete internal pressure functions for the round metal vessel under the given constraints .
3.1 Calculating the maximum pressure :
The matrix A below is used to define the mechanical properties of each type of metal which is required for engineering design .
the data of problem will be entered into the procedure with the instructions below
a1 : one-half crack depth (mm) ,
B1 : thickness of vessel cm) ,
c1 : one-half crack length (mm) ,
d1 : internal diameter(m) ,
P1 : internal pressure (MPa) ,
type1 : type of material ( inserted in the form of an element of the matrix A i.e A [k][i] ) ,
k : the kth row ( see table 1. ) .
 |
(1) |
Example 3.1.1
Consider a round vessel with technical data below :
one-half crack depth a = 5.5mm ; thickness of vessel B = 20cm ; one-half crack length c = 4.5mm ;
internal diameter d = 0.5m ; internal pressure P = 362 MPa ; type : AISI 4340 2 i.e A[6][1]
Calculate :
a. The stress intensity factor KI .
b.The maximum static pressure that would cause the facture propagation .
Compare the total stress intensity factor KI and KIc ( see table 1. ) and give your conclusion .
Solution :
Run the procedure *
> |
; 1](/view.aspx?SI=35194/0/images/Fracture_vessel_repo_130.gif) |
 |
 |
 |
 |
 |
 |
 |
 |
Read the data from the temperature mechanical properties table
|
 |
![s[1] = AISI43402](/view.aspx?SI=35194/0/images/Fracture_vessel_repo_140.gif) |
![s[2] = 1476](/view.aspx?SI=35194/0/images/Fracture_vessel_repo_141.gif) |
![s[3] = 1896](/view.aspx?SI=35194/0/images/Fracture_vessel_repo_142.gif) |
![s[4] = 81](/view.aspx?SI=35194/0/images/Fracture_vessel_repo_143.gif) |
![s[5] = 207](/view.aspx?SI=35194/0/images/Fracture_vessel_repo_144.gif) |
![Material = AISI43402, Sigma[ys] = 1476, Sigma[ts] = 1896, KIc = 81, E = 207](/view.aspx?SI=35194/0/images/Fracture_vessel_repo_145.gif) |
Calculating the hoop stress sigma , the shape factor Q , correction factor alpha and the total stress intensity factor KI
|
 |
 |
 |
|
 |
 |
 |
|
 |
 |
 |
|
 |
 |
 |
 |
1/. Compare the total stress intensity factor KI and KIc
|
 |
 |
2/. Determine the maximum pressure Pmax that causes the crack propagation
|
 |
 |
 |
3/. Consider the relation between Q and α
|
 |
 |
![alpha = `+`(`/`(`*`(1.12, `*`(`+`(`/`(`*`(`/`(1, 2), `*`(d[diameter])), `*`(B[thickness])), 1))), `*`(`^`(Q[shape], `/`(1, 2)))))](/view.aspx?SI=35194/0/images/Fracture_vessel_repo_166.gif) |
 |
 |
|
 |
 |
|
 |
|
Example 3.1.2
Consider a round vessel with technical data below :
one-half crack depth a = 4.5mm ; thickness of vessel B = 20cm ; one-half crack length c = 6mm ;
internal diameter d = 0.8m ; internal pressure P = 560 MPa ; type : AISI 4340 1 i.e A[5][1]
Calculate :
a. The stress intensity factor KI .
b.The maximum static pressure that would cause the facture propagation .
Compare the total stress intensity factor KI and KIc ( see table 1. ) and give your conclusion .
Solution :
Run the procedure
> |
; 1](/view.aspx?SI=35194/0/images/Fracture_vessel_repo_173.gif) |
 |
 |
 |
 |
 |
 |
 |
 |
Read the data from the temperature mechanical properties table
|
 |
![s[1] = AISI43401](/view.aspx?SI=35194/0/images/Fracture_vessel_repo_183.gif) |
![s[2] = 1089](/view.aspx?SI=35194/0/images/Fracture_vessel_repo_184.gif) |
![s[3] = 1097](/view.aspx?SI=35194/0/images/Fracture_vessel_repo_185.gif) |
![s[4] = 110](/view.aspx?SI=35194/0/images/Fracture_vessel_repo_186.gif) |
![s[5] = 207](/view.aspx?SI=35194/0/images/Fracture_vessel_repo_187.gif) |
![Material = AISI43401, Sigma[ys] = 1089, Sigma[ts] = 1097, KIc = 110, E = 207](/view.aspx?SI=35194/0/images/Fracture_vessel_repo_188.gif) |
Calculating the hoop stress sigma , the shape factor Q , correction factor alpha and the total stress intensity factor KI
|
 |
 |
 |
|
 |
 |
 |
|
 |
 |
 |
|
 |
 |
 |
 |
1/. Compare the total stress intensity factor KI and KIc
|
 |
 |
 |
(2) |
3.2 Estimating the interval of time while applying the internal dynamic pressure
For the next procedure
we enter the data of the problem with following instructions
a1 : one-half crack depth (mm) ,
B1 : thickness of vessel cm) ,
c1 : one-half crack length (mm) ,
d1 : internal diameter(m) ,
P1 : internal pressure function ( continous /discrete ) (MPa) ,
type1 : type of material ( inserted in the form of an element of the matrix A i.e A [k][i] ) ,
k : the kth row ( see table 1. ) ,
tlim : the upper bound of interval ( 0 , tlim ) that is a constraint of time used to solve the inequality KI < KIc ,
t0, y0 , y1 : the minimum and maximum values of t and y used to plot the graph of funtions KI and the polynomial KITaylor .
Example 3.2.1
Consider a round vessel with technical data below :
one-half crack depth a = 5mm ; thickness of vessel B = 25cm ; one-half crack length c = 8mm ;
internal diameter d = 0.8m ; internal pressure P =
MPa ; type : Ti6Al4V2 i.e A[4][1]
a. Find the expression of stress intensity factor KI and Taylor polynomial of KI .
b. Evaluating the time-limit for applying the continous / discrete form of internal dynamic pressure .
Solution :
Run the procedure
> |
))), `*`(2.5, `*`(exp(`+`(sin(`+`(`*`(0.6507451031e-1, `*`(t)), .6642806012)), `-`(9600.268)))))), A[4][1], 4, 10000, 5000, 0, 80)...](/view.aspx?SI=35194/0/images/Fracture_vessel_repo_258.gif)
))), `*`(2.5, `*`(exp(`+`(sin(`+`(`*`(0.6507451031e-1, `*`(t)), .6642806012)), `-`(9600.268)))))), A[4][1], 4, 10000, 5000, 0, 80)...](/view.aspx?SI=35194/0/images/Fracture_vessel_repo_259.gif) |
 |

 |
 |
 |
 |
 |
 |
 |
Read the data from the temperature mechanical properties table
|
 |
![s[1] = Ti6Al4V2](/view.aspx?SI=35194/0/images/Fracture_vessel_repo_270.gif) |
![s[2] = 1007](/view.aspx?SI=35194/0/images/Fracture_vessel_repo_271.gif) |
![s[3] = 1034](/view.aspx?SI=35194/0/images/Fracture_vessel_repo_272.gif) |
![s[4] = 40](/view.aspx?SI=35194/0/images/Fracture_vessel_repo_273.gif) |
![s[5] = 130](/view.aspx?SI=35194/0/images/Fracture_vessel_repo_274.gif) |
![Material = Ti6Al4V2, Sigma[ys] = 1007, Sigma[ts] = 1034, KIc = 40, E = 130](/view.aspx?SI=35194/0/images/Fracture_vessel_repo_275.gif) |
Calculating the hoop stress sigma , the shape factor Q , correction factor alpha and the total stress intensity factor KI
|
 |
 |
 |
|
 |
 |
 |
|
 |
 |
 |
|
 |
 |
 |
 |
1/. Compare the total stress intensity factor KI and KIc
|
 |
 |
<`(`+`(`/`(`*`(.3648, `*`(`+`(`*`(16.13, `*`(ln(`+`(t, 15.22)))), `*`(2.5, `*`(exp(`+`(sin(`+`(`*`(0.6507e-1, `*`(t)), .6643)), `-`(9600.)))))))), `*`(`^`(`+`(1.77, `-`(`*..." align="center" border="0"> |


 |
<`(`+`(`*`(0.8894882453e-3, `*`(t)), `-`(`*`(0.8849970677e-7, `*`(`^`(`+`(t, `-`(5000)), 2)))), `*`(0.1175367970e-10, `*..." align="center" border="0">
<`(`+`(`*`(0.8894882453e-3, `*`(t)), `-`(`*`(0.8849970677e-7, `*`(`^`(`+`(t, `-`(5000)), 2)))), `*`(0.1175367970e-10, `*..." align="center" border="0">
<`(`+`(`*`(0.8894882453e-3, `*`(t)), `-`(`*`(0.8849970677e-7, `*`(`^`(`+`(t, `-`(5000)), 2)))), `*`(0.1175367970e-10, `*..." align="center" border="0"> |
<`(0., t), `<`(t, 8155.424162)}" align="center" border="0"> |
|
 |
2/. Determine the maximum pressure Pmax that causes the crack propagation
|
 |
 |
 |
3/. Consider the relation between Q and α
|
 |
 |
![alpha = `+`(`/`(`*`(1.12, `*`(`+`(`/`(`*`(`/`(1, 2), `*`(d[diameter])), `*`(B[thickness])), 1))), `*`(`^`(Q[shape], `/`(1, 2)))))](/view.aspx?SI=35194/0/images/Fracture_vessel_repo_305.gif) |
 |
|

 |
 |
|
 |
|
> |
](/view.aspx?SI=35194/0/images/Fracture_vessel_repo_311.gif) |
> |
; 1](/view.aspx?SI=35194/0/images/Fracture_vessel_repo_318.gif) |
Example 3.2.2
Consider a round vessel with technical data below :
one-half crack depth a = 5mm ; thickness of vessel B = 25cm ; one-half crack length c = 8mm ;
internal diameter d = 0.8m ; internal pressure P is given from the data table below ; type : 18Ni(250) i.e A[9][1]
a. Find the expression of stress intensity factor KI and Taylor polynomial of KI .
b. Evaluating the time-limit for applying the discrete form of internal dynamic pressure P .
Solution :
Fitting the data points by 

> |
![with(CurveFitting); -1; with(plots); -1; `assign`(fnumPower, PolynomialInterpolation([[0, 0.], [5, 150], [10, 170], [15, 140], [20, 165], [25, 220], [30, 340], [35, 800], [40, 920], [45, 900], [50, 82...](/view.aspx?SI=35194/0/images/Fracture_vessel_repo_351.gif)
![with(CurveFitting); -1; with(plots); -1; `assign`(fnumPower, PolynomialInterpolation([[0, 0.], [5, 150], [10, 170], [15, 140], [20, 165], [25, 220], [30, 340], [35, 800], [40, 920], [45, 900], [50, 82...](/view.aspx?SI=35194/0/images/Fracture_vessel_repo_352.gif) |

 |
(3) |
> |
![pointplot({[0, 0.], [5, 150], [10, 170], [15, 140], [20, 165], [25, 220], [30, 340], [35, 800], [40, 920], [45, 900], [50, 820]}, axes = framed); 1](/view.aspx?SI=35194/0/images/Fracture_vessel_repo_355.gif)
![pointplot({[0, 0.], [5, 150], [10, 170], [15, 140], [20, 165], [25, 220], [30, 340], [35, 800], [40, 920], [45, 900], [50, 820]}, axes = framed); 1](/view.aspx?SI=35194/0/images/Fracture_vessel_repo_356.gif) |
Run this procedure
with the approximate polynomial
> |
)), A[9][1], 9, 80, 47, -50, 100); 1](/view.aspx?SI=35194/0/images/Fracture_vessel_repo_360.gif) |
 |



 |
 |
 |
 |
 |
 |
 |
Read the data from the temperature mechanical properties table
|
 |
![s[1] = `+`(`*`(18, `*`(Ni250)))](/view.aspx?SI=35194/0/images/Fracture_vessel_repo_373.gif) |
![s[2] = 1290](/view.aspx?SI=35194/0/images/Fracture_vessel_repo_374.gif) |
![s[3] = 1345](/view.aspx?SI=35194/0/images/Fracture_vessel_repo_375.gif) |
![s[4] = 176](/view.aspx?SI=35194/0/images/Fracture_vessel_repo_376.gif) |
![s[5] = NA](/view.aspx?SI=35194/0/images/Fracture_vessel_repo_377.gif) |
![Material = `+`(`*`(18, `*`(Ni250))), Sigma[ys] = 1290, Sigma[ts] = 1345, KIc = 176, E = NA](/view.aspx?SI=35194/0/images/Fracture_vessel_repo_378.gif) |
Calculating the hoop stress sigma , the shape factor Q , correction factor alpha and the total stress intensity factor KI
|
 |
 |

 |
|
 |
 |

 |
|
 |
 |


 |
|
 |
 |




 |



 |
1/. Compare the total stress intensity factor KI and KIc
|
 |
 |
<`(`+`(`/`(`*`(.3648, `*`(`+`(`-`(`*`(0.6786e-12, `*`(`^`(t, 10)))), `*`(0.1628e-9, `*`(`^`(t, 9))), `-`(`*`(0.1664e-7, `*`(`^`(t, 8)))), `*`(0.9478e-6, `*`(`^`(t, 7))), `..." align="center" border="0">
<`(`+`(`/`(`*`(.3648, `*`(`+`(`-`(`*`(0.6786e-12, `*`(`^`(t, 10)))), `*`(0.1628e-9, `*`(`^`(t, 9))), `-`(`*`(0.1664e-7, `*`(`^`(t, 8)))), `*`(0.9478e-6, `*`(`^`(t, 7))), `..." align="center" border="0">
<`(`+`(`/`(`*`(.3648, `*`(`+`(`-`(`*`(0.6786e-12, `*`(`^`(t, 10)))), `*`(0.1628e-9, `*`(`^`(t, 9))), `-`(`*`(0.1664e-7, `*`(`^`(t, 8)))), `*`(0.9478e-6, `*`(`^`(t, 7))), `..." align="center" border="0">
<`(`+`(`/`(`*`(.3648, `*`(`+`(`-`(`*`(0.6786e-12, `*`(`^`(t, 10)))), `*`(0.1628e-9, `*`(`^`(t, 9))), `-`(`*`(0.1664e-7, `*`(`^`(t, 8)))), `*`(0.9478e-6, `*`(`^`(t, 7))), `..." align="center" border="0"> |

 |
<`(`+`(`*`(51.69382641, `*`(t)), `*`(63.00700353, `*`(`^`(`+`(t, `-`(47)), 2))), `*`(88.08829310, `*`(`^`(`+`(t, `-`(47)..." align="center" border="0">
<`(`+`(`*`(51.69382641, `*`(t)), `*`(63.00700353, `*`(`^`(`+`(t, `-`(47)), 2))), `*`(88.08829310, `*`(`^`(`+`(t, `-`(47)..." align="center" border="0"> |
<`(0., t), `<`(t, 47.63775925)}" align="center" border="0"> |
|
<`(0., t), `<`(t, 47.52889066)}, {`<`(71.07919106, t), `<`(t, 72.30034108)}" align="center" border="0">
<`(0., t), `<`(t, 47.52889066)}, {`<`(71.07919106, t), `<`(t, 72.30034108)}" align="center" border="0"> |
2/. Determine the maximum pressure Pmax that causes the crack propagation
|
 |
 |


 |
3/. Consider the relation between Q and α
|
 |
 |
![alpha = `+`(`/`(`*`(1.12, `*`(`+`(`/`(`*`(`/`(1, 2), `*`(d[diameter])), `*`(B[thickness])), 1))), `*`(`^`(Q[shape], `/`(1, 2)))))](/view.aspx?SI=35194/0/images/Fracture_vessel_repo_423.gif) |
 |
|

 |
 |
|
 |
|
> |
](/view.aspx?SI=35194/0/images/Fracture_vessel_repo_429.gif) |
> |
; 1; pointplot({[0, 0.], [5, 150], [10, 170], [15, 140], [20, 165], [25, 220], [30, 340], [35, 800], [40, 920], [45, 900], [50, 820]}, axes = framed); 1](/view.aspx?SI=35194/0/images/Fracture_vessel_repo_439.gif)
; 1; pointplot({[0, 0.], [5, 150], [10, 170], [15, 140], [20, 165], [25, 220], [30, 340], [35, 800], [40, 920], [45, 900], [50, 820]}, axes = framed); 1](/view.aspx?SI=35194/0/images/Fracture_vessel_repo_440.gif) |
Notice that if we use Taylor series expansion of the approximate function for internal dynamic pressure at t = 47 it gives the same results of the time-limit calculated by analytical and series methods . (
,
)
Conclusion
Through the examples presented above, we find that the Maple tools has a lot of utilities in engineering computation and estimating the technical specifications . Note that in the case of applying internal dynamics pressure of discrete data we can use some softwares to find the best fitted functions , then get the expressions of the approximate functions to enter the procedures .
For the example 3.2.2 above, using the software Curve Expert , after entering the data we find the approximate expressions with parameters such as Standard Error, Correlation Coefficient ... From which we can choose the appropriate functions for the next calculation .
Fig 1. Data plot .
1. Logistic Model: y=a/(1+b*exp(-cx))Standard Error: 114.9209641Correlation Coefficient: 0.9580550Comments:The fit converged to a tolerance of 1e-006 in 36 iterations. No weighting used.
Fig 2 . Graph of the logistic fit .
2. The 4th Degree Polynomial Fit: y=a+bx+cx^2+dx^3+ex^4Coefficient Data:a = -0.59440559b = 57.013598c = -6.1678322d = 0.23554002e = -0.0025734266
Standard Error: 75.4632160Correlation Coefficient: 0.9866303Comments:Linear regression completed successfully. No weighting used.
Fig 3 . Graph of the 4th Degree Polynomial Fit .
3. Lagrangian Interpolation: y=a+bx+cx^2+dx^3+ex^4+fx^5+gx^6+hx^7+ix^8+jx^9+kx^10Coefficient Data:a = 0b = 651.55714c = -344.15691d = 77.202045e = -9.3938355f = 0.68524722g = -0.031280319h = 0.00089932063i = -1.5791958e-005j = 1.5445503e-007k = -6.4395062e-010Standard Error: 0.0000000Correlation Coefficient: 1.0000000Comments:Interpolation completed successfully. Since interpolations pass through each data point, the error is 0 and the corr. coeff. is 1.
Fig 4 . Graph of the Lagrangian Interpolation fit .
REFERENCES
[1] A.S. Koyabashi, M.Zii and L.R. Hall , Inter. J . Fracture mechanics ,1965.
[2] J.M. Dahl and P.M. Novotny , Advance Materials and Process , 1999 .[3] G.R Yoder et al., ASTM STP 801 , 1983 .[4] R.C. Shah , ASTM STP 560 , 1971 .
[5] J.M. Barsom and S.T. Rolfe , Fracture and Fatigue in Structure : Application of Fracture Mechanics , ASTM Philadelphia , PA 1999
[6] Nestor Perez , Fracture Mechanics , Kluwer Academic Publisher , Boston 2004 .
[7] Arun Shukla , Practical Fracture Mechanics in Design , 2nd edition , Marcel Dekker , NY 2005 .
_______________________________________________________________________________________________
Disclaimer: While every effort has been made to validate the solutions in this worksheet, the author is not responsible for any errors contained and are not liable for any damages resulting from the use of this material.
Legal Notice: Maplesoft, a division of Waterloo Maple Inc. 2009. Maplesoft and Maple are trademarks of Waterloo Maple Inc.The copyright for this application is owned by the author . Neither Maplesoft nor the authors are responsible for any errors contained within and are not liable for any damages resulting from the use of this material. This application is intended for non-commercial, non-profit use only. Contact the authors for permission if you wish to use this application in for-profit activities.