Application Center - Maplesoft

App Preview:

Exact solving of nonlinear optimization problems

You can switch back to the summary page by clicking here.

Learn about Maple
Download Application


 

nonl_opt.mws

Exact  solving of nonlinear optimization problems

by Aleksas Domarkas

Vilnius University, Faculty of Mathematics and Informatics,

Naugarduko 24, Vilnius, Lithuania

aleksas@ieva.mif.vu.lt

NOTE: Program Nopt solve exactly nonlinear optimization problems.

This is Maple 7  Worksheet.

Introduction

Program Nopt solve exactly (where  possible) nonlinear optimization problems.

This program employs the  function extre ma, which is based on method of Lagrange multipliers.

Calling Sequence:

     Nopt(expr, constraints);

     Nopt(expr, constraints, min);

     Nopt(expr, constraints, max);

 Parameters:

      expr        - expression whose extrema are to be found

      constraints - set of constraints

Program Nopt

>    restart;

>    Nopt := proc(f, cnstr::set)
option `Copyright Aleksas Domarkas, 2001,2002`;
local vars, L, S, SS, k, m, K, Fmax, Fmin, sol_min, sol_MIN,
sol_max, sol_MAX;
    vars := indets(f, name) union indets(cnstr, name);
    L := map(convert, cnstr, equality);
    K := combinat[choose](L);
    S := NULL;
    for k to nops(K) do
        if solve(K[k]) <> NULL then
            extrema(f, K[k], vars, 's || k');
            S := S, allvalues(s || k)
        end if
    end do;
    SS := {};
    for k to nops([S]) do
        if type(S[k], set) then SS := SS union evalc(S[k])
        end if
    end do;
    SS := remove(has, SS, I);
    S := NULL;
    for k to nops(SS) do
        if type(SS[k], set(equation)) and
        map(evalb, evalf(simplify(subs(SS[k], cnstr)))) =
        {true} then S := S, value(SS[k])
        end if
    end do;
    SS := [S];
    Fmax := -infinity;
    for k to nops(SS) do
        if evalf(Fmax) < evalf(simplify(subs(SS[k], f))) then
            Fmax := simplify(value(subs(SS[k], f)));
            sol_max := SS[k]
        end if
    end do;
    sol_MAX := sol_max;
    for k to nops(SS) do
        if Fmax = simplify(value(subs(SS[k], f))) and
        SS[k] minus sol_max <> {} then
            sol_MAX := sol_MAX, SS[k]
        end if
    end do;
    'Fmax' = simplify(expand(Fmax)), sol_MAX;
    Fmin := infinity;
    for k to nops(SS) do
        if evalf(simplify(subs(SS[k], f))) < evalf(Fmin) then
            Fmin := simplify(subs(SS[k], f));
            sol_min := SS[k]
        end if
    end do;
    sol_MIN := sol_min;
    for k to nops(SS) do
        if Fmin = simplify(value(subs(SS[k], f))) and
        SS[k] minus sol_min <> {} then
            sol_MIN := sol_MIN, SS[k]
        end if
    end do;
    if nargs = 3 and args[3] = min then
        RETURN('F[min]' = simplify(expand(Fmin)), sol_MIN)
    elif nargs = 3 and args[3] = max then
        RETURN('F[max]' = simplify(expand(Fmax)), sol_MAX)
    else RETURN('F[min]' = simplify(expand(Fmin)), sol_MIN,
        'F[max]' = simplify(expand(Fmax)), sol_MAX)
    end if
end proc;

Nopt := proc (f, cnstr::set) local vars, L, S, SS, k, m, K, Fmax, Fmin, sol_min, sol_MIN, sol_max, sol_MAX; option `Copyright Aleksas Domarkas, 2001,2002`; vars := `union`(indets(f,name),indets(cnstr,n...

Example 1

 From   http://www.mapleapps.com/powertools/optimization/worksheets/markowitz.mws

Problem:  Minimize function

>    F1:=.08*x[1]^2-.10*x[1]*x[2]-.10*x[1]*x[3]-.10*x[1]*x[4]+.16*x[2]^2-
.04*x[2]*x[3]-.04*x[2]*x[4]+.35*x[3]^2+.12*x[3]*x[4]+.35*x[4]^2;

F1 := .8e-1*x[1]^2-.10*x[1]*x[2]-.10*x[1]*x[3]-.10*x[1]*x[4]+.16*x[2]^2-.4e-1*x[2]*x[3]-.4e-1*x[2]*x[4]+.35*x[3]^2+.12*x[3]*x[4]+.35*x[4]^2

with constraints

>    cnstr1:={0 <= x[3], 0 <= x[1], 0 <= x[2], 0 <= x[4],
 1000 <= .05*x[1]+.10*x[2]+.15*x[3]+.30*x[4],
 x[1]+x[2]+x[3]+x[4]<=10000};

cnstr1 := {0 <= x[4], 1000 <= .5e-1*x[1]+.10*x[2]+.15*x[3]+.30*x[4], x[1]+x[2]+x[3]+x[4] <= 10000, 0 <= x[2], 0 <= x[3], 0 <= x[1]}

Solving problem:

>    cnstr1:=convert(cnstr1, rational);

cnstr1 := {0 <= x[4], x[1]+x[2]+x[3]+x[4] <= 10000, 0 <= x[2], 0 <= x[3], 0 <= x[1], 1000 <= 1/20*x[1]+1/10*x[2]+3/20*x[3]+3/10*x[4]}

>    F1:=convert(F1, rational);

F1 := 2/25*x[1]^2-1/10*x[1]*x[2]-1/10*x[1]*x[3]-1/10*x[1]*x[4]+4/25*x[2]^2-1/25*x[2]*x[3]-1/25*x[2]*x[4]+7/20*x[3]^2+3/25*x[3]*x[4]+7/20*x[4]^2

>    s:=Nopt(F1, cnstr1, min);

s := F[min] = 366444000000/302113, {x[3] = 273820000/302113, x[1] = 1106640000/302113, x[4] = 463360000/302113, x[2] = 667000000/302113}

Solution:

>    s[1],seq(x[k]=subs(s[2], x[k]), k=1..4);

F[min] = 366444000000/302113, x[1] = 1106640000/302113, x[2] = 667000000/302113, x[3] = 273820000/302113, x[4] = 463360000/302113

>    evalf(%,20);

F[min] = 1212936.8812331809621, x[1] = 3663.0002681116006263, x[2] = 2207.7831804655873796, x[3] = 906.34961090717711585, x[4] = 1533.7307563726155445
F[min] = 1212936.8812331809621, x[1] = 3663.0002681116006263, x[2] = 2207.7831804655873796, x[3] = 906.34961090717711585, x[4] = 1533.7307563726155445

>   

Example 2

From vec_calc  Package -- Version 7.0,   extrema.mws   by Arthur Belmonte and Philip B. Yasskin

http://www.mapleapps.com/powertools/vectorcalculus/worksheets/vec_calc7.zip

Extremize the function:

>    f:=(x,y)->x*y*exp(-x^2/2-y^2/8);

f := proc (x, y) options operator, arrow; x*y*exp(-1/2*x^2-1/8*y^2) end proc

inside or on the ellipse g(x,y) = 1  where

>    g:=(x,y)->x^2/4 + y^2/16;

g := proc (x, y) options operator, arrow; 1/4*x^2+1/16*y^2 end proc

>    Nopt(f(x,y),{g(x,y)<=1},max);
Nopt(f(x,y),{g(x,y)<=1},min);

F[max] = 2*exp(-1), {y = 2, x = 1}, {y = -2, x = -1}

F[min] = -2*exp(-1), {y = 2, x = -1}, {y = -2, x = 1}

Absolute maxima occur at the interior points (1,2) and (-1,-2), and the absolute minima occur at the interior points (1,-2) and (-1,2).

>    plots[contourplot3d](f(x,y), x=-2..2, y=-4..4, axes=boxed):
plots[spacecurve]([2*cos(t),4*sin(t),0],t=0..2*Pi,color=black):
plots[display3d](%,%%,orientation=[-90,0]);

[Maple Plot]

We replace ellipse x^2/4+y^2/16 = 1   by    x^2+y^2/4 = 1  .

>    g:=(x,y)->x^2 + y^2/4;

g := proc (x, y) options operator, arrow; x^2+1/4*y^2 end proc

 Then

>    Nopt(f(x,y),{g(x,y)<=1},max);
Nopt(f(x,y),{g(x,y)<=1},min);

F[max] = exp(-1/2), {x = 1/2*sqrt(2), y = sqrt(2)}, {x = -1/2*sqrt(2), y = -sqrt(2)}

F[min] = -exp(-1/2), {x = -1/2*sqrt(2), y = sqrt(2)}, {x = 1/2*sqrt(2), y = -sqrt(2)}

>    plots[contourplot3d](f(x,y), x=-2..2, y=-4..4, axes=boxed):
plots[spacecurve]([cos(t),2*sin(t),0],t=0..2*Pi,color=black):
plots[display3d](%,%%,orientation=[-90,0]);

[Maple Plot]

Absolute maxima occur at the boundary points ( sqrt(2)/2, sqrt(2) ) and ( -sqrt(2)/2, -sqrt(2) ) , and the absolute minima occur at the boundary points  ( -sqrt(2)/2, sqrt(2) )  and  ( sqrt(2)/2, -sqrt(2) ) .

Example 3

Problem

From Calculus and Analytic Geometry III, Fall 1997,  M.Kawski

ftp://math.la.asu.edu/pub/kawski/MAPLE/272/f_optim/optim.mws

>    z:=x^3+3*x*y^2-3*x+2;

z := x^3+3*x*y^2-3*x+2

>    mypoints:=[[1.25, -1], [1, 1.1], [-4, 3], [-1, -3], [1.25, -1]];
plot(mypoints,thickness=3,color=magenta);

mypoints := [[1.25, -1], [1, 1.1], [-4, 3], [-1, -3], [1.25, -1]]

[Maple Plot]

We now want to find the maximum and the minimum value of z as x and y range over this polygon
(its interior, edges, and corners).

>   

Construction set of linear constraints

>    genc:=proc(A,B)
local AA,BB,l,eq;
geometry[point](AA,A);geometry[point](BB,B);
geometry[line](l,[AA,BB],[x,y]);
eq:=geometry[Equation](l);
if subs(x=0,y=0,lhs(eq))>=0 then
RETURN(lhs(eq)>=0)
else RETURN(lhs(eq)<=0) end if;
end proc;

genc := proc (A, B) local AA, BB, l, eq; geometry[point](AA,A); geometry[point](BB,B); geometry[line](l,[AA, BB],[x, y]); eq := geometry[Equation](l); if 0 <= subs(x = 0,y = 0,lhs(eq)) then RETURN(0 <=...
genc := proc (A, B) local AA, BB, l, eq; geometry[point](AA,A); geometry[point](BB,B); geometry[line](l,[AA, BB],[x, y]); eq := geometry[Equation](l); if 0 <= subs(x = 0,y = 0,lhs(eq)) then RETURN(0 <=...
genc := proc (A, B) local AA, BB, l, eq; geometry[point](AA,A); geometry[point](BB,B); geometry[line](l,[AA, BB],[x, y]); eq := geometry[Equation](l); if 0 <= subs(x = 0,y = 0,lhs(eq)) then RETURN(0 <=...
genc := proc (A, B) local AA, BB, l, eq; geometry[point](AA,A); geometry[point](BB,B); geometry[line](l,[AA, BB],[x, y]); eq := geometry[Equation](l); if 0 <= subs(x = 0,y = 0,lhs(eq)) then RETURN(0 <=...
genc := proc (A, B) local AA, BB, l, eq; geometry[point](AA,A); geometry[point](BB,B); geometry[line](l,[AA, BB],[x, y]); eq := geometry[Equation](l); if 0 <= subs(x = 0,y = 0,lhs(eq)) then RETURN(0 <=...
genc := proc (A, B) local AA, BB, l, eq; geometry[point](AA,A); geometry[point](BB,B); geometry[line](l,[AA, BB],[x, y]); eq := geometry[Equation](l); if 0 <= subs(x = 0,y = 0,lhs(eq)) then RETURN(0 <=...
genc := proc (A, B) local AA, BB, l, eq; geometry[point](AA,A); geometry[point](BB,B); geometry[line](l,[AA, BB],[x, y]); eq := geometry[Equation](l); if 0 <= subs(x = 0,y = 0,lhs(eq)) then RETURN(0 <=...
genc := proc (A, B) local AA, BB, l, eq; geometry[point](AA,A); geometry[point](BB,B); geometry[line](l,[AA, BB],[x, y]); eq := geometry[Equation](l); if 0 <= subs(x = 0,y = 0,lhs(eq)) then RETURN(0 <=...

>    n:=nops(mypoints)-1:

>    for k to n do
t||k:=genc(mypoints[k],mypoints[k+1])
end do;

t1 := 0 <= 2.375-2.1*x-.25*y

t2 := 0 <= 7.4-1.9*x-5*y

t3 := 0 <= 15+6*x+3*y

t4 := 0 <= 4.75-2*x+2.25*y

>    constr:={seq(t||k, k=1..n)};

constr := {0 <= 2.375-2.1*x-.25*y, 0 <= 15+6*x+3*y, 0 <= 7.4-1.9*x-5*y, 0 <= 4.75-2*x+2.25*y}

>    plots[inequal](constr,x=-4..2, y=-3..3,
    optionsfeasible=(color=tan),
    optionsclosed=(color=green, thickness=3),
    optionsexcluded=(color=yellow));

[Maple Plot]

>   

Solving problem

>    c:=convert(constr,rational);

c := {0 <= 15+6*x+3*y, 0 <= 19/8-21/10*x-1/4*y, 0 <= 37/5-19/10*x-5*y, 0 <= 19/4-2*x+9/4*y}

>    Nopt(z,c,min); sol_min:=%:
Nopt(z,c,max);

F[min] = -158, {y = 3, x = -4}

F[max] = 25598050/6036849+63904/6036849*sqrt(3994), {y = -2755/2457-16/2457*sqrt(3994), x = 304/273-2/273*sqrt(3994)}

>    sol_max:=evalf(%);

sol_max := F[max] = 4.909293153, {y = -1.532832568, x = .6505633613}

>    mypoints3d:=[seq([op(mypoints[k]),0],k=1..n+1)];

mypoints3d := [[1.25, -1, 0], [1, 1.1, 0], [-4, 3, 0], [-1, -3, 0], [1.25, -1, 0]]

>    pol:=plots[polygonplot3d](mypoints3d, color=tan):

>    plots[contourplot3d](z, x=-4..2, y=-3..3,contours=30, axes=boxed):
plottools[point](subs(sol_min[2],[x,y,0]), color=red, symbol=diamond):

>    plottools[point](subs(sol_max[2],[x,y,0]), color=red, symbol=diamond):

>    plots[display3d](pol, %%%, %%, %, orientation = [-150,45]);

[Maple Plot]

>    z:='z':

>   

Example 4

From: IMSL MATH/LIBRARY, Fortran subroutines for Mathematical Applications, vol. 1 and 2,

Chapter 8: Optimization (math.pdf  4.9 M  file)

>    F4:=100*(x[2]-x[1]^2)^2+(1-x[1])^2;

F4 := 100*(x[2]-x[1]^2)^2+(1-x[1])^2

>    cnstr4:={x[1]>=-2,x[1]<=0.5,x[2]>=-1,x[2]<=2};

cnstr4 := {-1 <= x[2], x[2] <= 2, -2 <= x[1], x[1] <= .5}

>    cnstr4:=convert(cnstr4,rational);

cnstr4 := {x[1] <= 1/2, -1 <= x[2], x[2] <= 2, -2 <= x[1]}

>    Nopt(F4,cnstr4);

F[min] = 1/4, {x[2] = 1/4, x[1] = 1/2}, F[max] = 2509, {x[2] = -1, x[1] = -2}

>   

Example 5

>    F5:=x^2-2*y^2+4*x*y-6*x-1;

F5 := x^2-2*y^2+4*x*y-6*x-1

>    cnstr5:={x>=0,y>=0,x+y<=3};

cnstr5 := {0 <= x, 0 <= y, x+y <= 3}

>    Nopt(F5,cnstr5);

F[min] = -19, {x = 0, y = 3}, F[max] = -1, {x = 0, y = 0}

>   

Example 6

>    F6:=x^2+y^2-12*x+16*y;

F6 := x^2+y^2-12*x+16*y

>    cnstr6:={x^2+y^2<=144, y<=abs(x)};

cnstr6 := {x^2+y^2 <= 144, y <= abs(x)}

>    Nopt(F6,cnstr6);

F[min] = -100, {x = 6, y = -8}, F[max] = 144+168*sqrt(2), {y = 6*sqrt(2), x = -6*sqrt(2)}

>    #minimize(F6,location);

Note: If  expression  or constraints has   abs  function   Nopt  program may give false results.

>   

Example 7

>    F7:=x+y+z;cnstr7:={x^2+y^2<=z,z<=1};

F7 := x+y+z

cnstr7 := {x^2+y^2 <= z, z <= 1}

>    Nopt(F7,cnstr7);

F[min] = -1/2, {y = -1/2, x = -1/2, z = 1/2}, F[max] = 1+sqrt(2), {x = 1/2*sqrt(2), y = 1/2*sqrt(2), z = 1}

>   

Example 8

>    F8:=x+y;

F8 := x+y

>    cnstr8:={x+2*y>=2,x-y<=2,4*x-y>=0,x<=4,y<=6.5};

cnstr8 := {2 <= x+2*y, x-y <= 2, 0 <= 4*x-y, x <= 4, y <= 6.5}

>    cnstr8:=convert(cnstr8,rational);

cnstr8 := {y <= 13/2, 2 <= x+2*y, x-y <= 2, 0 <= 4*x-y, x <= 4}

>    Nopt(F8,cnstr8);

F[min] = 10/9, {y = 8/9, x = 2/9}, F[max] = 21/2, {x = 4, y = 13/2}

>   

Example 9

>    F9:=x^2+y^2;

>    cnstr9:={(x-5)^2+(y-3)^2>=9,(x-5)^2+(y-3)^2<=36,x+y>=8,x>=0,y>=0};

F9 := x^2+y^2

cnstr9 := {8 <= x+y, (x-5)^2+(y-3)^2 <= 36, 9 <= (x-5)^2+(y-3)^2, 0 <= x, 0 <= y}

>    sol:=Nopt(F9,cnstr9);

sol := F[min] = 43-6*sqrt(2), {y = 3+3/2*sqrt(2), x = 5-3/2*sqrt(2)}, F[max] = 70+12*sqrt(34), {y = 3+9/17*sqrt(34), x = 5+15/17*sqrt(34)}

>    P1:=plottools[point](subs(sol[2],[x,y]),color=black): #min

>    P2:=plottools[point](subs(sol[4],[x,y]),color=blue):  #max

>    eqs:=map(convert,cnstr9,equality):

>    P3:=plots[implicitplot](eqs,x=-1..11,y=-3..9,axes=boxed,scaling=constrained):

>    plots[display](P1,P2,P3);

[Maple Plot]

>   

Example 10  

>    F10:=x^6+y^6-3*x^2+6*x*y-3*y^2;

F10 := x^6+y^6-3*x^2+6*x*y-3*y^2

>    cnstr10:={x <= 2, y <= x, 0 <= y};

cnstr10 := {0 <= y, x <= 2, y <= x}

>    Nopt(F10,cnstr10);

F[min] = -2, {x = 1, y = 0}, F[max] = 128, {x = 2, y = 2}

>   

Example 11

We minimize and maximize distance  between plane 3*x+4*y+12*z-288 = 0  and  ellipsoid   x^2/96+y^2+z^2-1 = 0  .

>    Nopt(sqrt((x-u)^2+(y-v)^2+(z-w)^2),{x^2/96+y^2+z^2-1=0,3*u+4*v+12*w-288=0});

F[min] = 256/13, {v = 8361/1352, w = 25083/1352, z = 3/8, x = 9, y = 1/8, u = 2289/169}, F[max] = 320/13, {v = 10071/1352, w = 30213/1352, z = -3/8, x = -9, y = -1/8, u = -561/169}

>   

Example 12

>    F12:=8*x^2+y^2-(x^2+y^2)^2;

F12 := 8*x^2+y^2-(x^2+y^2)^2

>    cnstr12:={x^2+y^2<=3};

cnstr12 := {x^2+y^2 <= 3}

>    Nopt(F12,cnstr12);

F[min] = -6, {x = 0, y = -sqrt(3)}, {x = 0, y = sqrt(3)}, F[max] = 15, {x = sqrt(3), y = 0}, {x = -sqrt(3), y = 0}

>   

Example 13

>    F13:=5*x1-2*x2+2*x3-4*x4+x5-2*x6;

F13 := 5*x1-2*x2+2*x3-4*x4+x5-2*x6

>    cnstr13:={2*x1-x2+x3-2*x4+x5+x6=1,-3*x1+x2+x4-x5+x6=2,
-5*x1+x2-2*x3+x4-x6=3,seq(x||k>=0,k=1..6)};

cnstr13 := {0 <= x1, 0 <= x2, 0 <= x3, 0 <= x4, 0 <= x5, 0 <= x6, 2*x1-x2+x3-2*x4+x5+x6 = 1, -3*x1+x2+x4-x5+x6 = 2, -5*x1+x2-2*x3+x4-x6 = 3}
cnstr13 := {0 <= x1, 0 <= x2, 0 <= x3, 0 <= x4, 0 <= x5, 0 <= x6, 2*x1-x2+x3-2*x4+x5+x6 = 1, -3*x1+x2+x4-x5+x6 = 2, -5*x1+x2-2*x3+x4-x6 = 3}

>    Nopt(F13,cnstr13);

F[min] = -35, {x3 = 0, x1 = 0, x6 = 6, x4 = 9, x5 = 13, x2 = 0}, F[max] = -5, {x1 = 0, x6 = 0, x4 = 0, x3 = 3, x5 = 7, x2 = 9}

>   

Example 14

>    F14:=(x[1]+4*x[2]-3*x[3]+x[4])/(2*x[1]+x[2]+x[3]+3*x[4]);

F14 := (x[1]+4*x[2]-3*x[3]+x[4])/(2*x[1]+x[2]+x[3]+3*x[4])

>    cnstr14:={x[1]-2*x[2]+x[3]=2,2*x[1]+x[2]+x[4]=6,
x[1]>=0,x[2]>=0,x[3]>=0,x[4]>=0};

cnstr14 := {0 <= x[4], 0 <= x[2], 0 <= x[3], 0 <= x[1], 2*x[1]+x[2]+x[4] = 6, x[1]-2*x[2]+x[3] = 2}

>    Nopt(F14,cnstr14);

F[min] = -9/10, {x[2] = 6, x[3] = 14, x[4] = 0, x[1] = 0}, F[max] = 11/15, {x[1] = 14/5, x[4] = 0, x[2] = 2/5, x[3] = 0}

>   

Example 15

>    F15:=(3*x[1]-x[2])/(x[1]+x[2]);

F15 := (3*x[1]-x[2])/(x[1]+x[2])

>    cnstr15:={x[1]+x[2]+x[3]=5,-x[1]+3*x[2]+x[4]=7,
3*x[1]-x[2]+x[5]=11,x[1]>=0,x[2]>=0,x[3]>=0,x[4]>=0,x[5]>=0};

cnstr15 := {3*x[1]-x[2]+x[5] = 11, x[1]+x[2]+x[3] = 5, -x[1]+3*x[2]+x[4] = 7, 0 <= x[5], 0 <= x[4], 0 <= x[2], 0 <= x[3], 0 <= x[1]}

>    Nopt(F15,cnstr15,min);

F[min] = -1, {x[5] = 40/3, x[2] = 7/3, x[3] = 8/3, x[4] = 0, x[1] = 0}

>    Nopt(F15,cnstr15,max);

F[max] = 3, {x[5] = 0, x[3] = 4/3, x[2] = 0, x[1] = 11/3, x[4] = 32/3}

Example 16

>    F16:=(y^2-x^2)*exp(1-x^2+y^2);

F16 := (y^2-x^2)*exp(1-x^2+y^2)

>    cnstr16:={x^2+y^2<=4};

cnstr16 := {x^2+y^2 <= 4}

>    Nopt(F16,cnstr16);

F[min] = -1, {x = -1, y = 0}, {x = 1, y = 0}, {y = 1/2*sqrt(6), x = -1/2*sqrt(10)}, {y = 1/2*sqrt(6), x = 1/2*sqrt(10)}, {y = -1/2*sqrt(6), x = 1/2*sqrt(10)}, {y = -1/2*sqrt(6), x = -1/2*sqrt(10)}, F[m...
F[min] = -1, {x = -1, y = 0}, {x = 1, y = 0}, {y = 1/2*sqrt(6), x = -1/2*sqrt(10)}, {y = 1/2*sqrt(6), x = 1/2*sqrt(10)}, {y = -1/2*sqrt(6), x = 1/2*sqrt(10)}, {y = -1/2*sqrt(6), x = -1/2*sqrt(10)}, F[m...

>   

While every effort has been made to validate the solutions in this worksheet, Waterloo Maple Inc. and the contributors are not responsible for any errors contained and are not liable for any damages resulting from the use of this material.