nonl_opt.mws
Exact solving of nonlinear optimization problems
by
Aleksas Domarkas
Vilnius University, Faculty of Mathematics and Informatics,
Naugarduko 24, Vilnius, Lithuania
aleksas@ieva.mif.vu.lt
NOTE: Program
Nopt
solve exactly nonlinear optimization problems.
This is Maple 7 Worksheet.
Introduction
Program
Nopt
solve exactly (where possible) nonlinear optimization problems.
This program employs the function
extre
ma,
which is based on method of Lagrange multipliers.
Calling Sequence:
Nopt(expr, constraints);
Nopt(expr, constraints, min);
Nopt(expr, constraints, max);
Parameters:
expr -
expression whose extrema are to be found
constraints -
set of constraints
Program Nopt
> |
Nopt := proc(f, cnstr::set)
option `Copyright Aleksas Domarkas, 2001,2002`;
local vars, L, S, SS, k, m, K, Fmax, Fmin, sol_min, sol_MIN,
sol_max, sol_MAX;
vars := indets(f, name) union indets(cnstr, name);
L := map(convert, cnstr, equality);
K := combinat[choose](L);
S := NULL;
for k to nops(K) do
if solve(K[k]) <> NULL then
extrema(f, K[k], vars, 's || k');
S := S, allvalues(s || k)
end if
end do;
SS := {};
for k to nops([S]) do
if type(S[k], set) then SS := SS union evalc(S[k])
end if
end do;
SS := remove(has, SS, I);
S := NULL;
for k to nops(SS) do
if type(SS[k], set(equation)) and
map(evalb, evalf(simplify(subs(SS[k], cnstr)))) =
{true} then S := S, value(SS[k])
end if
end do;
SS := [S];
Fmax := -infinity;
for k to nops(SS) do
if evalf(Fmax) < evalf(simplify(subs(SS[k], f))) then
Fmax := simplify(value(subs(SS[k], f)));
sol_max := SS[k]
end if
end do;
sol_MAX := sol_max;
for k to nops(SS) do
if Fmax = simplify(value(subs(SS[k], f))) and
SS[k] minus sol_max <> {} then
sol_MAX := sol_MAX, SS[k]
end if
end do;
'Fmax' = simplify(expand(Fmax)), sol_MAX;
Fmin := infinity;
for k to nops(SS) do
if evalf(simplify(subs(SS[k], f))) < evalf(Fmin) then
Fmin := simplify(subs(SS[k], f));
sol_min := SS[k]
end if
end do;
sol_MIN := sol_min;
for k to nops(SS) do
if Fmin = simplify(value(subs(SS[k], f))) and
SS[k] minus sol_min <> {} then
sol_MIN := sol_MIN, SS[k]
end if
end do;
if nargs = 3 and args[3] = min then
RETURN('F[min]' = simplify(expand(Fmin)), sol_MIN)
elif nargs = 3 and args[3] = max then
RETURN('F[max]' = simplify(expand(Fmax)), sol_MAX)
else RETURN('F[min]' = simplify(expand(Fmin)), sol_MIN,
'F[max]' = simplify(expand(Fmax)), sol_MAX)
end if
end proc;
|
Example 1
From
http://www.mapleapps.com/powertools/optimization/worksheets/markowitz.mws
Problem:
Minimize function
> |
F1:=.08*x[1]^2-.10*x[1]*x[2]-.10*x[1]*x[3]-.10*x[1]*x[4]+.16*x[2]^2-
.04*x[2]*x[3]-.04*x[2]*x[4]+.35*x[3]^2+.12*x[3]*x[4]+.35*x[4]^2;
|
with constraints
> |
cnstr1:={0 <= x[3], 0 <= x[1], 0 <= x[2], 0 <= x[4],
1000 <= .05*x[1]+.10*x[2]+.15*x[3]+.30*x[4],
x[1]+x[2]+x[3]+x[4]<=10000};
|
Solving problem:
> |
cnstr1:=convert(cnstr1, rational);
|
> |
F1:=convert(F1, rational);
|
> |
s:=Nopt(F1, cnstr1, min);
|
Solution:
> |
s[1],seq(x[k]=subs(s[2], x[k]), k=1..4);
|
Example 2
From
vec_calc
Package -- Version 7.0,
extrema.mws
by Arthur Belmonte and Philip B. Yasskin
http://www.mapleapps.com/powertools/vectorcalculus/worksheets/vec_calc7.zip
Extremize the function:
> |
f:=(x,y)->x*y*exp(-x^2/2-y^2/8);
|
inside or on the ellipse
where
> |
g:=(x,y)->x^2/4 + y^2/16;
|
> |
Nopt(f(x,y),{g(x,y)<=1},max);
Nopt(f(x,y),{g(x,y)<=1},min);
|
Absolute maxima occur at the interior points (1,2) and (-1,-2), and the absolute minima occur at the interior points (1,-2) and (-1,2).
> |
plots[contourplot3d](f(x,y), x=-2..2, y=-4..4, axes=boxed):
plots[spacecurve]([2*cos(t),4*sin(t),0],t=0..2*Pi,color=black):
plots[display3d](%,%%,orientation=[-90,0]);
|
We replace ellipse
by
.
Then
> |
Nopt(f(x,y),{g(x,y)<=1},max);
Nopt(f(x,y),{g(x,y)<=1},min);
|
> |
plots[contourplot3d](f(x,y), x=-2..2, y=-4..4, axes=boxed):
plots[spacecurve]([cos(t),2*sin(t),0],t=0..2*Pi,color=black):
plots[display3d](%,%%,orientation=[-90,0]);
|
Absolute maxima occur at the boundary points (
) and (
) , and the absolute minima occur at the boundary points (
) and (
) .
Example 3
Problem
From Calculus and Analytic Geometry III, Fall 1997,
M.Kawski
ftp://math.la.asu.edu/pub/kawski/MAPLE/272/f_optim/optim.mws
> |
mypoints:=[[1.25, -1], [1, 1.1], [-4, 3], [-1, -3], [1.25, -1]];
plot(mypoints,thickness=3,color=magenta);
|
We now want to find the maximum and the minimum value of z as x and y range over this polygon
(its interior, edges, and corners).
Construction set of linear constraints
> |
genc:=proc(A,B)
local AA,BB,l,eq;
geometry[point](AA,A);geometry[point](BB,B);
geometry[line](l,[AA,BB],[x,y]);
eq:=geometry[Equation](l);
if subs(x=0,y=0,lhs(eq))>=0 then
RETURN(lhs(eq)>=0)
else RETURN(lhs(eq)<=0) end if;
end proc;
|
> |
for k to n do
t||k:=genc(mypoints[k],mypoints[k+1])
end do;
|
> |
constr:={seq(t||k, k=1..n)};
|
> |
plots[inequal](constr,x=-4..2, y=-3..3,
optionsfeasible=(color=tan),
optionsclosed=(color=green, thickness=3),
optionsexcluded=(color=yellow));
|
Solving problem
> |
c:=convert(constr,rational);
|
> |
Nopt(z,c,min); sol_min:=%:
Nopt(z,c,max);
|
> |
mypoints3d:=[seq([op(mypoints[k]),0],k=1..n+1)];
|
> |
pol:=plots[polygonplot3d](mypoints3d, color=tan):
|
> |
plots[contourplot3d](z, x=-4..2, y=-3..3,contours=30, axes=boxed):
plottools[point](subs(sol_min[2],[x,y,0]), color=red, symbol=diamond):
|
> |
plottools[point](subs(sol_max[2],[x,y,0]), color=red, symbol=diamond):
|
> |
plots[display3d](pol, %%%, %%, %, orientation = [-150,45]);
|
Example 4
From: IMSL MATH/LIBRARY, Fortran subroutines for Mathematical Applications, vol. 1 and 2,
Chapter 8: Optimization (math.pdf 4.9 M file)
> |
F4:=100*(x[2]-x[1]^2)^2+(1-x[1])^2;
|
> |
cnstr4:={x[1]>=-2,x[1]<=0.5,x[2]>=-1,x[2]<=2};
|
> |
cnstr4:=convert(cnstr4,rational);
|
Example 5
> |
F5:=x^2-2*y^2+4*x*y-6*x-1;
|
> |
cnstr5:={x>=0,y>=0,x+y<=3};
|
Example 6
> |
cnstr6:={x^2+y^2<=144, y<=abs(x)};
|
> |
#minimize(F6,location);
|
Note: If expression or constraints has
abs
function
Nopt
program may give false results.
Example 7
> |
F7:=x+y+z;cnstr7:={x^2+y^2<=z,z<=1};
|
Example 8
> |
cnstr8:={x+2*y>=2,x-y<=2,4*x-y>=0,x<=4,y<=6.5};
|
> |
cnstr8:=convert(cnstr8,rational);
|
Example 9
> |
cnstr9:={(x-5)^2+(y-3)^2>=9,(x-5)^2+(y-3)^2<=36,x+y>=8,x>=0,y>=0};
|
> |
P1:=plottools[point](subs(sol[2],[x,y]),color=black): #min
|
> |
P2:=plottools[point](subs(sol[4],[x,y]),color=blue): #max
|
> |
eqs:=map(convert,cnstr9,equality):
|
> |
P3:=plots[implicitplot](eqs,x=-1..11,y=-3..9,axes=boxed,scaling=constrained):
|
> |
plots[display](P1,P2,P3);
|
Example 10
> |
F10:=x^6+y^6-3*x^2+6*x*y-3*y^2;
|
> |
cnstr10:={x <= 2, y <= x, 0 <= y};
|
Example 11
We minimize and maximize distance between plane
and ellipsoid
.
> |
Nopt(sqrt((x-u)^2+(y-v)^2+(z-w)^2),{x^2/96+y^2+z^2-1=0,3*u+4*v+12*w-288=0});
|
Example 12
> |
F12:=8*x^2+y^2-(x^2+y^2)^2;
|
Example 13
> |
F13:=5*x1-2*x2+2*x3-4*x4+x5-2*x6;
|
> |
cnstr13:={2*x1-x2+x3-2*x4+x5+x6=1,-3*x1+x2+x4-x5+x6=2,
-5*x1+x2-2*x3+x4-x6=3,seq(x||k>=0,k=1..6)};
|
Example 14
> |
F14:=(x[1]+4*x[2]-3*x[3]+x[4])/(2*x[1]+x[2]+x[3]+3*x[4]);
|
> |
cnstr14:={x[1]-2*x[2]+x[3]=2,2*x[1]+x[2]+x[4]=6,
x[1]>=0,x[2]>=0,x[3]>=0,x[4]>=0};
|
Example 15
> |
F15:=(3*x[1]-x[2])/(x[1]+x[2]);
|
> |
cnstr15:={x[1]+x[2]+x[3]=5,-x[1]+3*x[2]+x[4]=7,
3*x[1]-x[2]+x[5]=11,x[1]>=0,x[2]>=0,x[3]>=0,x[4]>=0,x[5]>=0};
|
Example 16
> |
F16:=(y^2-x^2)*exp(1-x^2+y^2);
|
While every effort has been made to validate the solutions in this worksheet, Waterloo Maple Inc. and the contributors are not responsible for any errors contained and are not liable for any damages resulting from the use of this material.