pdegensol.mws
Finding general solutions for partial differential equations
by
Aleksas Domarkas
Vilnius University, Faculty of Mathematics and Informatics,
Naugarduko 24, Vilnius, Lithuania
aleksas@ieva.mif.vu.lt
NOTE: In this session we find general solutions for first and second order linear partial differential equations
Introduction
Examples 1-4 from P.Golokvoscius, Linear and quasilinear first order partial differential equations, Vilnius University, 1996 (in Lithuanian); 5-9 from V.S.Vladimirov(ed.), Exercises book on Equations of Mathematical Physics, Nauka, Moscow, 1982(in Russian).
1 Example
> |
eq:=(x-y)*diff(z(x,y),x)+(x+y)*diff(z(x,y),y)=0;
|
> |
tr:={x=r*cos(phi),y=r*sin(phi)};
|
> |
PDEtools[dchange](tr,eq,simplify);
|
> |
so:=pdsolve(%,z(phi,r));
|
> |
itr:={r=sqrt(x^2+y^2),phi=arctan(y/x)};
|
Solution:
> |
sol:=z(x,y)=simplify(subs(itr,rhs(so)));
|
Checking the Solution:
> |
simplify(subs(sol,eq));
|
Other form of the solution:
Checking the Solution:
> |
simplify(subs(sol,eq));
|
2 Example
Warning, the protected names norm and trace have been redefined and unprotected
> |
eq:=(x-z)*diff(u(x,y,z),x)+(y-z)*diff(u(x,y,z),y)+2*z*diff(u(x,y,z),z)=0;
|
We use method from E.Kamke, Diferentialgleichungen, Losungsmethoden und Losungen, II, Partiele Differentialgleichungen erster Ordnung, Leipzig 1959, Part II, Chapter III(translation into Russian 1966).
> |
kk:=[coeff(lhs(eq),diff(u(x,y,z),x)),
coeff(lhs(eq),diff(u(x,y,z),y)),
coeff(lhs(eq),diff(u(x,y,z),z))];
|
> |
A:=transpose(jacobian(kk,[x,y,z]));
|
Eigenvectors:
> |
v:=seq(op(op(3,tv[k])),k=1..nops([tv]));
|
Eigenvalues:
> |
s:=seq(op(1,tv[k])$op(2,tv[k]),k=1..nops([tv]));
|
Indepedent integrals:
> |
C1:=dotprod([x,y,z],v[2])^s[1]/dotprod([x,y,z],v[1])^s[2];
|
> |
C2:=dotprod([x,y,z],v[3])^s[1]/dotprod([x,y,z],v[1])^s[3];
|
> |
jacobian([C1,C2],[x,y,z]);
|
Solution:
> |
sol:=u(x,y,z)=F(C1,C2);
|
Checking the Solution:
> |
subs(sol,eq):simplify(%);
|
3 Example
> |
eq:=(z-y)*diff(u(x,y,z),x)+(x-z)*diff(u(x,y,z),y)+(y-x)*diff(u(x,y,z),z)=0;
|
> |
S:=PDEtools[charstrip](eq,u(x,y,z));
|
> |
Sx:=select(has,S,diff(x(_s),_s))[1];
|
> |
Sy:=select(has,S,diff(y(_s),_s))[1];
|
> |
Sz:=select(has,S,diff(z(_s),_s))[1];
|
Then first integral is:
> |
C1:=subs(x(_s)=x,y(_s)=y,z(_s)=z,lhs(%));
|
> |
simplify(2*Sx*x(_s)+2*Sy*y(_s)+2*Sz*z(_s));
|
Then second integral is:
> |
C2:=subs(x(_s)=x,y(_s)=y,z(_s)=z,lhs(%));
|
Solution:
> |
sol:=u(x,y,z)=F(C1,C2);
|
Checking the Solution:
> |
simplify(subs(sol,eq));
|
4 Example
> |
eq:=y*diff(u(x,y,p,q),x)-x*diff(u(x,y,p,q),y)+q*diff(u(x,y,p,q),p)-p*diff(u(x,y,p,q),q)=0;
|
> |
S:=PDEtools[charstrip](eq,u(x,y,p,q));
|
> |
Sx:=select(has,S,diff(x(_s),_s))[1];
|
> |
Sy:=select(has,S,diff(y(_s),_s))[1];
|
> |
Sp:=select(has,S,diff(p(_s),_s))[1];
|
> |
Sq:=select(has,S,diff(q(_s),_s))[1];
|
Then first integral is:
> |
C1:=subs(x(_s)=x,y(_s)=y,lhs(%));
|
> |
2*p(_s)*diff(p(_s),_s)+2*q(_s)*diff(q(_s),_s) = 0;
|
Then second integral is:
> |
C2:=subs(p(_s)=p,q(_s)=q,lhs(%));
|
> |
Sp*x(_s)+Sx*p(_s)+Sq*y(_s)+Sy*q(_s);
|
> |
diff(x(_s)*p(_s)+y(_s)*q(_s),_s);
|
Then third integral is:
Solution:
> |
sol:=u(x,y,p,q)=F(C1,C2,C3);
|
Checking the Solution:
> |
simplify(subs(sol,eq));
|
5 Example
> |
eq:=y*diff(u(x,y),x,x)+(x-y)*diff(u(x,y),x,y)-x*diff(u(x,y),y,y)=0;
|
program
to_can
> |
to_can:=proc(eq)option `Copyright Aleksas Domarkas, 1998`;
local A,itr,t,i;
A := linalg[matrix](2,2,[coeff(eq,diff(u(x,y),x,x)),coeff(eq,diff(u(x,y),x,y))/2,coeff(eq,diff(u(x,y),x,y))/2, coeff(eq,diff(u(x,y),y,y))]);
simplify({solve(A[1,1]*z^2-2*A[1,2]*z+A[2,2],z)});
simplify(%,power,symbolic);
subs(y=y(x),%);
{seq(dsolve(diff(y(x),x)=%[i],y(x)),i=1..nops(%))};
subs(y(x)=y,%);
{seq(solve(%[i],_C1),i=1..nops(%))};
if nops(%)=1 and not has(%,I) then itr:={xi=%[1],eta=y}; t:=par;elif
not has(%,I) then itr:={xi=%[1],eta=%[2]};t:=hip;else
itr :={xi=coeff(%[1],I),eta=%[1]-coeff(%[1],I)*I};t:=ell; fi;
itr:=simplify(itr);
RETURN(itr,t);
end;
|
> |
PDEtools[dchange](tr,eq,expand);
|
Solution:
> |
sol:=u(x,y)=sort(subs(itr,rhs(expand(%))),[x,y]);
|
Checking the Solution:
> |
simplify(subs(sol,eq));
|
6 Example
> |
eq:=diff(u(x,y),x,y)-x*diff(u(x,y),x)+u(x,y)=0;
|
> |
diff(v(x,y),y)-x*v(x,y)=0;
|
> |
subs(v(x,y)=diff(u(x,y),x,x),%);
|
> |
isolate(%,op(-1,lhs(%)));
|
Solution:
> |
sol:=u(x,y)=subs(%,rhs(so));
|
Checking the Solution:
> |
simplify(subs(sol,eq));
|
7 Example
> |
eq:=diff(u(x,y),x,y)+2*x*y*diff(u(x,y),y)-2*x*u(x,y)=0;
|
> |
diff(v(x,y),x)+2*x*y*v(x,y)=0;
|
> |
subs(v(x,y)=diff(u(x,y),y,y),%);
|
Solution:
> |
sol:=simplify(subs(%,so));
|
Checking the Solution:
8
Example
> |
eq:=diff(u(x,y),x,y)+diff(u(x,y),x)+y*diff(u(x,y),y)+(y-1)*u(x,y)=0;
|
> |
subs(u(x,y)=w(x,y)*exp(-y),eq);
|
> |
eqn:=simplify(%/exp(-y));
|
> |
DEtools[dsubs](diff(w(x,y),y$2)=v(x,y),%);
|
> |
subs(v(x,y)=diff(w(x,y),y,y),%);
|
Solution:
> |
sol:=u(x,y)=subs(%,rhs(so))*exp(-y);
|
Checking the Solution:
> |
expand(simplify(subs(%,eq)));
|
9
Example
> |
eq:=diff(u(x,y),x,y)+x*diff(u(x,y),x)+2*y*diff(u(x,y),y)+2*x*y*u(x,y)=0;
|
> |
subs(u(x,y)=w(x,y)*exp(-x*y),eq);
|
> |
eqn:=simplify(%/exp(-x*y));
|
> |
DEtools[dsubs](diff(w(x,y),y$2)=v(x,y),%);
|
> |
#diff(v(x,y),x)+y*v(x,y)=0;
|
> |
subs(v(x,y)=diff(w(x,y),y,y),%);
|
Solution:
> |
sol:=u(x,y)=subs(%,rhs(so))*exp(-x*y);
|
Checking the Solution:
While every effort has been made to validate the solutions in this worksheet, Waterloo Maple Inc. and the contributors are not responsible for any errors contained and are not liable for any damages resulting from the use of this material.
Back to contents