Application Center - Maplesoft

App Preview:

Green functions for regular differential operators

You can switch back to the summary page by clicking here.

Learn about Maple
Download Application


 

greenfun.mws

Green functions for regular differential operators

by Aleksas Domarkas

Vilnius Lniversity, Faculty of Mathematics and Informatics,

Naugarduko 24, Vilnius, Lithuania

aleksas@ieva.mif.vu.lt

NOTE: In this session we find Green functions for regular differential

operators Au=-diff(p(x)*diff(u(x),x),x)+q(x)*u(x).

Introduction

>    restart;

Please  input  number of examples n (1..12)  and   Execute Worksheet

>    n:=3;

n := 3

Operators

>    L||1:=-diff(u(x),x,x),u(0)=0,u(1)=0;

L1 := -diff(u(x),`$`(x,2)), u(0) = 0, u(1) = 0

>    L||2:=-diff(u(x),x,x),u(0)=0,D(u)(1)=0;

L2 := -diff(u(x),`$`(x,2)), u(0) = 0, D(u)(1) = 0

>    L||3:=-diff(u(x),x,x),u(0)=0,u(1)+beta*D(u)(1)=0;

L3 := -diff(u(x),`$`(x,2)), u(0) = 0, u(1)+beta*D(u)(1) = 0

>    L||4:=-diff(u(x),x,x)-u(x),u(0)=0,u(1)=0;

L4 := -diff(u(x),`$`(x,2))-u(x), u(0) = 0, u(1) = 0

>    L||5:=-diff(u(x),x,x)-u(x),u(0)-D(u)(0)=0,u(1)-D(u)(1)=0;

L5 := -diff(u(x),`$`(x,2))-u(x), u(0)-D(u)(0) = 0, u(1)-D(u)(1) = 0

>    L||6:=-diff(u(x),x,x)+u(x),u(0)=0,u(1)=0;

L6 := -diff(u(x),`$`(x,2))+u(x), u(0) = 0, u(1) = 0

>    L||7:=-diff(u(x),x,x)+u(x),D(u)(0)=0,D(u)(1)=0;

L7 := -diff(u(x),`$`(x,2))+u(x), D(u)(0) = 0, D(u)(1) = 0

>    L||8:=-(1+x^2)*diff(u(x),x,x)-2*x*diff(u(x),x),u(0)-D(u)(0)=0,u(1)=0;

L8 := -(1+x^2)*diff(u(x),`$`(x,2))-2*x*diff(u(x),x), u(0)-D(u)(0) = 0, u(1) = 0

>    L||9:=-(1+x^2)*diff(u(x),x,x)-2*x*diff(u(x),x),u(0)=0,u(1)+D(u)(1)=0;

L9 := -(1+x^2)*diff(u(x),`$`(x,2))-2*x*diff(u(x),x), u(0) = 0, u(1)+D(u)(1) = 0

>    L||10:=-Diff(Diff(u(x),x)/(x-2),x)+3*u(x)/(x-2)^3,u(0)=0,u(1)=0;

L10 := -Diff(Diff(u(x),x)/(x-2),x)+3*u(x)/(x-2)^3, u(0) = 0, u(1) = 0

>    L||11:=-Diff(Diff(u(x),x)*exp(-x^2/2),x)+exp(-x^2/2)*u(x),u(0)=0,u(1)=0;

L11 := -Diff(Diff(u(x),x)*exp(-1/2*x^2),x)+exp(-1/2*x^2)*u(x), u(0) = 0, u(1) = 0

>    L||12:=-diff(u(x),x,x)+(1+x^2)*u(x),u(0)=0,D(u)(1)=0;

L12 := -diff(u(x),`$`(x,2))+(1+x^2)*u(x), u(0) = 0, D(u)(1) = 0

>   

Solution

>    l:=value(L||n[1]);p(x):=-coeff(l,diff(u(x),x,x));

l := -diff(u(x),`$`(x,2))

p(x) := 1

>    s1:=L||n[2]; s2:=L||n[3];

s1 := u(0) = 0

s2 := u(1)+beta*D(u)(1) = 0

>    rhs(dsolve(l,u(x)));

_C1*x+_C2

>    u:=unapply(%,x);

u := proc (x) options operator, arrow; _C1*x+_C2 end proc

>    s1;

_C2 = 0

>    simplify(solve(%,{_C1,_C2}));

{_C2 = 0, _C1 = _C1}

>    y1:=unapply(simplify(subs(%,u(x))),x);

y1 := proc (x) options operator, arrow; _C1*x end proc

>    s2;

_C1+_C2+beta*_C1 = 0

>    simplify(solve(%,{_C1,_C2}));

{_C1 = _C1, _C2 = -_C1-beta*_C1}

>    y2:=unapply(simplify(subs(%,u(x))),x);

y2 := proc (x) options operator, arrow; _C1*x-_C1-beta*_C1 end proc

>    w(x) :=simplify( y1(x)*diff(y2(x),x)-y2(x)*diff(y1(x),x));

w(x) := _C1^2+beta*_C1^2

>    k:=simplify(subs(x=0,p(x)*w(x)));

k := _C1^2+beta*_C1^2

>    G:=(x,y)->piecewise(x<=y, -y1(x)*(y2(y))/k, x>=y, -y1(y)*(y2(x))/k);

G := proc (x, y) options operator, arrow; piecewise(x <= y,-y1(x)*y2(y)/k,y <= x,-y1(y)*y2(x)/k) end proc

>    G(x,y);

PIECEWISE([-_C1*x*(_C1*y-_C1-beta*_C1)/(_C1^2+beta*_C1^2), x <= y],[-_C1*y*(_C1*x-_C1-beta*_C1)/(_C1^2+beta*_C1^2), y <= x])

>    G(x,y):=normal(%);u:='u':

G(x,y) := PIECEWISE([-x*(y-1-beta)/(1+beta), x <= y],[-y*(x-1-beta)/(1+beta), y <= x])

Example

>    cat(`EXAMPLE `, n); L||n;

`EXAMPLE 3`

-diff(u(x),`$`(x,2)), u(0) = 0, u(1)+beta*D(u)(1) = 0

>    `G(x,y)`=G(x,y);

`G(x,y)` = PIECEWISE([-x*(y-1-beta)/(1+beta), x <= y],[-y*(x-1-beta)/(1+beta), y <= x])

>    #plot3d(G(x,y), x=0..1, y=0..1);

>   

While every effort has been made to validate the solutions in this worksheet, Waterloo Maple Inc. and the contributors are not responsible for any errors contained and are not liable for any damages resulting from the use of this material.

Back to contents