heat_eqf.mws
Fourier method for heat equation
by
Aleksas Domarkas
Vilnius University, Faculty of Mathematics and Informatics,
Naugarduko 24, Vilnius, Lithuania
aleksas@ieva.mif.vu.lt
NOTE: In this session we find solutions of boundary value problems for heat equation using Fourier method
1 Example
Problem
> |
eq:=diff(u(x,t),t)-a^2*diff(u(x,t),x,x)=0;#0<x,x<Pi,t>0;
|
> |
init_c:=u(x,0)=phi(x);#0<x,x<Pi
|
> |
bound_c:=u(0,t)=0,u(Pi,t)=0;
|
> |
phi:=x->Pi/2-abs(Pi/2-x);
|
> |
'phi(x)'=convert(phi(x),piecewise);
|
> |
plot(phi,0..Pi,axes=boxed);
|
Eigenvalues and eigenfunctions
> |
L:=-diff(y(x),x,x)=lambda*y(x);
|
> |
s1:=y(0)=0; s2:=y(Pi)=0;
|
> |
y :=unapply( rhs(%),x);
|
> |
linalg[genmatrix](sist,{_C1,_C2});
|
> |
_EnvAllSolutions := true:
|
> |
y:='y':assume(k,posint);
|
> |
dsolve({%,s1,s2},y(x));
|
> |
rhs(%)/sqrt(int(rhs(%)^2,x=0..Pi));
|
> |
simplify(%,radical,symbolic):
|
Eigenvalues and eigenfunctions:
Solving problem
Solution we find in form:
> |
spr:=Sum(T[k](t)*ef(k,x),k=1..infinity);
|
For coefficients T[k](t) we have ODE problem:
> |
ode:={diff(u(t),t)+a^2*ev(k)*u(t)=0,
|
> |
u(0)=int((phi(x))*ef(k,x),x=0..Pi)};
|
Solution
> |
sol:=subs(T[k](t)=rhs(%),spr);
|
> |
sol_20:=value(subs(infinity=20,sol));
|
> |
plot3d(subs(a=1,sol_20),x=0..Pi,t=0..1);
|
Test
> |
subs(u(x,t)=sol_20,eq):
|
> |
plot(subs(t=0,sol_20),x=0..Pi);
|
2 Example
Problem
> |
eq:=diff(u(x,t),t)-a^2*diff(u(x,t),x,x)=0;#0<x,x<l,t>0;
|
> |
init_c:=u(x,0)=phi(x);#0<x,x<l;
|
> |
bound_c:=u(0,t)=0,u(l,t)=0;
|
Eigenvalues and eigenfunctions
> |
L:=-diff(y(x),x,x)=lambda*y(x);
|
> |
s1:=y(0)=0; s2:=y(l)=0;
|
> |
assume(lambda>0,l>0,a>0);
|
> |
y :=unapply( rhs(%),x);
|
> |
linalg[genmatrix](sist,{_C1,_C2});
|
> |
_EnvAllSolutions := true:
|
> |
y:='y':assume(k,posint);
|
> |
dsolve({%,s1,s2},y(x));
|
> |
rhs(%)/sqrt(int(rhs(%)^2,x=0..l));
|
> |
simplify(%,radical,symbolic):
|
Eigenvalues and eigenfunctions:
Solving problem
Solution we find in form:
> |
spr:=Sum(T[k](t)*ef(k,x),k=1..infinity);
|
For coefficients T[k](t) we have ODE problem:
> |
ode:={diff(u(t),t)+a^2*ev(k)*u(t)=0,
|
> |
u(0)=int((phi(x))*ef(k,x),x=0..l)};
|
Solution
> |
sol:=subs(T[k](t)=rhs(%),spr);
|
We convert this solution to other form. Index
change to
:
> |
subs(k=2*m+1,op(1,%));assume(m,integer):
|
> |
solution:=subs(a='a',k='k',l='l',m='m',%);
|
3 Example
Problem
[bic] 694
> |
eq:=diff(u(x,t),t)+beta*u(x,t)-a^2*diff(u(x,t),x,x)=0;0<x,x<l,t>0;
|
> |
bound_c:=u(0,t)=0,u(l,t)=0;
|
Eigenvalues and eigenfunctions
> |
L:=-diff(y(x),x,x)=lambda*y(x);
|
> |
s1:=y(0)=0; s2:=y(l)=0;
|
> |
assume(lambda>0,l>0,a>0);
|
> |
y :=unapply( rhs(%),x);
|
> |
linalg[genmatrix](sist,{_C1,_C2});
|
> |
_EnvAllSolutions := true:
|
> |
y:='y':assume(k,posint);
|
> |
dsolve({%,s1,s2},y(x));
|
> |
rhs(%)/sqrt(int(rhs(%)^2,x=0..l));
|
> |
simplify(%,radical,symbolic):
|
Eigenvalues and eigenfunctions:
Solving problem
Solution we find in form:
> |
spr:=Sum(T[k](t)*tf(k,x),k=1..infinity);
|
For coefficients T[k](t) we have ODE problem:
> |
uz:={diff(u(t),t)+beta*u(t)+a^2*tr(k)*u(t)=0,
|
> |
u(0)=int((phi(xi))*tf(k,xi),xi=0..l)};
|
Solution
> |
sol:=simplify(subs(T[k](t)=rhs(%),spr));
|
or
> |
subs(a='a',k='k',l='l',%);
|
4 Example
Problem
[komec] 93 p.
> |
eq:=diff(u(x,t),t)-a^2*diff(u(x,t),x,x)=0;0<x,x<l,t>0;
|
> |
bound_c:=u(0,t)=0,D[1](u)(l,t)=0;
|
Eigenvalues and eigenfunctions
> |
L:=-diff(y(x),x,x)=lambda*y(x);
|
> |
s1:=y(0)=0; s2:=D(y)(l)=0;
|
> |
y :=unapply( rhs(%),x);
|
> |
linalg[genmatrix](sist,{_C1,_C2});
|
> |
_EnvAllSolutions := true:
|
> |
y:='y':assume(k,posint);
|
> |
simplify(subs(_C2=%,y(x)));
|
> |
%/sqrt(int(%^2,x=0..l));
|
Eigenvalues and eigenfunctions:
Solving problem
Solution we find in form:
> |
spr:=Sum(T[k](t)*tf(k,x),k=0..infinity);
|
For coefficients T[k](t) we have ODE problem:
> |
uz:={diff(u(t),t)+a^2*tr(k)*u(t)=0,
|
> |
u(0)=int((phi(xi))*tf(k,xi),xi=0..l)};
|
Solution
> |
simplify(subs(T[k](t)=rhs(%),spr));
|
Solution
> |
sol:=subs(k='k',factor(%));
|
5 Example
Problem
[komec] 98 p.
> |
eq:=diff(u(x,t),t)-a^2*diff(u(x,t),x,x)=f(x,t);0<x,x<l,t>0;
|
> |
bound_c:=D[1](u)(0,t)=0,u(l,t)=0;
|
> |
a:=4;l:=7;phi:=x->0;f:=(x,t)->2;
|
Eigenvalues and eigenfunctions
> |
L:=-diff(y(x),x,x)=lambda*y(x);
|
> |
s1:=D(y)(0)=0; s2:=y(l)=0;
|
> |
y :=unapply( rhs(%),x);
|
> |
linalg[genmatrix](sist,{_C1,_C2});
|
> |
_EnvAllSolutions := true:
|
> |
y:='y':assume(k,posint);
|
> |
simplify(subs(_C1=%,y(x)));
|
> |
%/sqrt(int(%^2,x=0..l));
|
Eigenvalues and eigenfunctions:
Solving problem
Solution we find in form:
> |
spr:=Sum(T[k](t)*tf(k,x),k=0..infinity);
|
For coefficients T[k](t) we have ODE problem:
> |
uz:={diff(u(t),t)+a^2*tr(k)*u(t)=int((f(xi))*tf(k,xi),xi=0..l),
|
> |
u(0)=int((phi(xi))*tf(k,xi),xi=0..l)};
|
Solution:
> |
simplify(subs(T[k](t)=rhs(%),spr));
|
Solution
> |
sol:=subs(k='k',factor(%));
|
Limit of solution, when
> |
eqn:=subs(u(x,t)=y(x),eq); s1,s2;
|
> |
dsolve({eqn,s1,s2},y(x));
|
We test this at x=0:
> |
convert(%,StandardFunctions);
|
6 Example
Problem
> |
restart;with(linalg,laplacian):
|
> |
eq:=diff(u(r,t),t)-a^2*expand(laplacian(u(r,t),[r,alpha],coords=polar))=0;
0<r,r<R,t>0;
|
> |
a:=2;R:=8;phi:=r->64-r^2;
|
Solution representation formula
where
-
zeros of Bessel J(0,x) function
,
Zeros of Bessel J(0,x) function
> |
plot(J(x),x=0..30);
#plot(J(x),x=10..30);
|
> |
mu[1]:=fsolve(J(x),x,2..3);
|
> |
for k from 1 to Order do
|
> |
mu[k+1]:=fsolve(J(x),x,%..%+2*Pi);od;
|
Note: see ?BesselJZeros
Solution
> |
A:=k->2/(R*BesselJ(1,mu[k]))^2*int(r*phi(r)*BesselJ(0,mu[k]/R*r),r=0..R);
|
> |
sol:=sum(A(k)*exp(-(a*mu[k])^2*t/(R^2))*BesselJ(0,mu[k]*r/R),k=1..Order);
|
Plots
> |
plot(simplify(subs(r=0,sol)),t=0..10);
|
> |
plots[animate](sol,r=-R..R,t=0..10,frames=20);
|
3d animation:
> |
K := [seq(0.5*k,k=0..15)];
|
> |
f:=x->cat(`t=`,convert(x,symbol));
|
> |
addcoords(z_cylindrical,[z,r,theta],[r*cos(theta),r*sin(theta),z]):
|
> |
for k to m do
Pc||k:=plot3d(subs(t=K[k],sol),r=0..R,theta=0..2*Pi,
coords=z_cylindrical, title=tit[k]):end do:
|
> |
plots[display3d]([seq(Pc||k,k=1..m)],insequence=true);
|
While every effort has been made to validate the solutions in this worksheet, Waterloo Maple Inc. and the conevibutors are not responsible for any errors contained and are not liable for any damages resulting from the use of this material.
Back to contents