elliptic3d.mws
Boundary value problems for three-dimensional elliptic equations
by
Aleksas Domarkas
Vilnius University, Faculty of Mathematics and Informatics,
Naugarduko 24, Vilnius, Lithuania
aleksas@ieva.mif.vu.lt
NOTE: In this session we find solutions of boundary value problems for three-dimensional
Laplace's , Poisson or Helmholtz equations in regions r<R, r>R and R1<r<R2.
1 Example
Problem
Solve boundary-value problem
, r1< r < r2,
u|
r=r
1
= u1, u|
r=r
2
= u2
here
;
-- constants.
Solving method
We consider problem
, r1< r < r2,
u|
r=r1
=0, u|
r=r2
=0
and problem
, r1< r < r2,
w|
r=r1
=u1, w|
r=r2
=u2.
Then u+w is solution of our problem. Solutions of these problems are sought in the form
u = v(r)*cos(phi)*sin(theta)*cos(theta),
Solving problem
> |
with(linalg,laplacian):
|
> |
l:=expand(laplacian(u(r,theta,phi),[r,theta,phi], coords=spherical))-x*z;
|
> |
tr:={x=r*cos(phi)*sin(theta),y=r*sin(phi)*sin(theta),z=r*cos(theta)};
|
> |
subs(u(r,theta,phi)=v(r)*cos(phi)*sin(theta)*cos(theta),l):
|
> |
l1 := simplify(%/(cos(phi)*sin(theta)*cos(theta)));
|
> |
spr := dsolve(l1,{v(r)});
|
> |
solve({subs(r=r1,rhs(spr)),subs(r=r2,rhs(spr))},{_C1,_C2});
|
> |
v(r) := subs(%,rhs(spr));
|
> |
subs(u(r,theta,phi)=w(r),laplacian(u(r,theta,phi),[r,theta,phi], coords=spherical));
|
> |
solve({subs(r=r1,rhs(%))=u1,subs(r=r2,rhs(%))=u2},{_C1,_C2});
|
> |
w(r) := subs(%,rhs(%%));
|
> |
sol:=v(r)*cos(phi)*sin(theta)*cos(theta)+w(r):
|
Solution
Checking the Solution
> |
simplify(laplacian(sol,[r,theta,phi], coords=spherical))-subs(tr,x*z);
|
> |
simplify(subs(r=r1,sol));
|
> |
simplify(subs(r=r2,sol));
|
Solution in Cartesian coordinates
> |
solve(tr,{r,theta,phi}):
|
This is solution in Cartesian coordinates.
Checking the Solution:
> |
simplify(laplacian(sol1,[x,y,z])-x*z);
|
> |
subs(tr,r=r1,sol1):simplify(%,radical,symbolic):combine(%,trig);
|
> |
subs(tr,r=r2,sol1):simplify(%,radical,symbolic):combine(%,trig);
|
2 Example
Problem
> |
restart;with(linalg,laplacian):with(orthopoly,P):
|
Solve three-dimensional interior boundary-value problem
, r < R,
u|
r=R
= g
.
Here r=sqrt(x^2+y^2+z^2), u=u(x,y,z) or u=u(r,phi,theta).
The function g may be polynomial with variables z and x^2+y^2 or with cos(theta) .
> |
g:=randpoly([z,x^2+y^2],degree=rand(2..5)(),terms=3);
|
or
> |
#g:=randpoly([cos(theta)]);
|
Solving problem
> |
tr:={x=r*cos(phi)*sin(theta),y=r*sin(phi)*sin(theta),z=r*cos(theta)};
|
> |
f:=simplify(expand(%));
|
> |
us:=sum(A[k]*r^k*P(k,cos(theta)),k=0..n);
|
> |
k:='k': ug:=sum(A[k]*r^k*P[k],k=0..n);
|
> |
koef:=solve(identity(subs(r=R,us)=f,theta),{seq(A[k],k=0..n)});
|
> |
subs(koef,us):sol:=expand(%);
|
In Cartesian coordinates:
> |
solve(tr,{r,theta,phi}):allvalues(%):
subs(%[1],sol):
solc:=simplify(%);
|
Solution
Problem:
> |
print(laplacian(u(x,y,z),[x,y,z])=0,` if r<R`);u=g,` if r`=R;
|
Solution:
or
where
is the nth Legendre (spherical) polynomial.
In Cartesian coordinates:
Checking the Solution
> |
simplify(laplacian(sol,[r,theta,phi],coords=spherical));
|
> |
simplify(laplacian(solc,[x,y,z]));
|
> |
simplify(subs(tr,solc-g),{x^2+y^2+z^2=R^2,r=R}):
|
> |
subs(seq(P[k]=P(k,cos(theta)),k=0..n),sol1):
|
Then sol=sol1 .
Note
In similar way can solve boundary-value problems in domains r>R and R1<r<R2.
3 Example
Problem
> |
restart;with(linalg,laplacian):
|
Solve three-dimensional interior boundary-value problem
, r < R,
|
r=R
= g
.
Here
,
or
.
Solving problem
> |
with(linalg,laplacian);
|
> |
eq:=laplacian(u(r,theta,phi),[r,theta,phi],coords=spherical)+
a^2*u(r,theta,phi)=0:
|
> |
subs(u(r,theta,phi)=v(r)*cos(theta),eq):
|
> |
l:=combine(%/cos(theta));
|
> |
dsolve({l,v(0)<infinity,D(v)(R)=1},v(r));
|
> |
sol:=subs(%,v(r)*cos(theta));
|
Solution
Problem:
> |
Delta*u+a^2*u=0,` if r<R`;u=g,` if r`=R;
|
Solution:
Checking the Solution
> |
simplify(subs(u(r,theta,phi)=sol,eq));
|
4 Example
Problem
u|
r=1
=f .
We use package
orbitals
from share libary R5 or R4.
> |
restart;with(share):readshare(orbitals,science): with(orbitals):
|
> |
assume(theta,real);assume(phi,real);
|
See ?share and ?share,contents for information about the share library
> |
#f:=randpoly([x,y,z],terms=3);
|
Solving problem
> |
tr:={x=r*cos(phi)*sin(theta),y=r*sin(phi)*sin(theta),z=r*cos(theta)}:
|
We search solution in the form:
> |
u=Sum(Sum('a(i,j)*(r/R)^i*Y(i,j)','j'=-'i'..'i'),'i'=0..d);
|
Here
is
from
orbitals
.
> |
Y:=(l,m)->ComplexSurfaceHarmonic(l,m,theta,phi):
|
We compute coefficients:
> |
a:=(i,j)->Int(Int(fs*conjugate(Y(i,j))*sin(theta),theta=0..Pi),phi=0..2*Pi):
|
> |
convert(%%%,trig):value(%):
|
Solution:
> |
sol:=map(simplify,collect(%,r));
|
Checking the Solution
> |
linalg[laplacian](sol,[r,theta,phi],coords=spherical):combine(%,trig);
|
> |
simplify(fs-subs(r=R,sol)):combine(%,trig);
|
5 Example
Problem
=0, r<1,
u|
r=1
=
.
Solving problem
We search solution in the form:
> |
Sum(r^n*(A[0,n]*LP(n,0)+
Sum((A[k,n]*cos(k*phi)+B[k,n]*sin(k*phi))*LP(n,k),k=1..n)),n=0..Order);
|
Here LP(n,k)=P(n, k, cos(theta)), P(n, k, x) is associated Legendre function. Function LP we define later.
> |
fc:=combine(subs(r=1,so));
|
> |
f:=cos(2*phi+Pi/3)*sin(theta)^2;
|
> |
collect(%,[cos(2*phi),sin(2*phi)]);
|
> |
dp:=collect(%,[sin(phi),cos(phi)]);
|
> |
sk:=collect(fc-dp,[sin(phi),cos(phi),cos(2*phi),sin(2*phi)]);
|
> |
LP:=proc(n::nonnegint,k::nonnegint)
local i;
orthopoly[P](n,t);
for i to k do diff(%,t) end do;
sin(theta)^k*subs(t=cos(theta),%);
RETURN(%);
end;
|
Next we compute coefficients:
> |
solve(identity(%%,theta),%);K:=K union %;
|
> |
solve(identity(%%,theta),%);K:=K union %;
|
> |
solve(identity(%%,theta),%);K:=K union %;
|
> |
solve(identity(%%,theta),%);K:=K union %;
|
> |
subs(sin(phi)=0,cos(phi)=0,cos(2*phi)=0,sin(2*phi)=0,sk);
|
> |
solve(identity(%%,theta),%);K:=K union %;
|
Other form of the solution:
> |
sol:=r^2*cos(2*phi+Pi/3)*sin(theta)^2;
|
Checking the Solution
> |
combine(linalg[laplacian](sol,[r,theta,phi],coords=spherical));
|
6 Example
problem
|
r=R
=
theory
where
,
is associated Legendre function.
procedures
Procedure for computing LP(n,k)=P(n, k, cos(theta)), here P(n, k, x) is associated Legendre function.
> |
LP:=proc(n::nonnegint,k::nonnegint)
local i;
orthopoly[P](n,t);
for i to k do diff(%,t) end do;
sin(theta)^k*subs(t=cos(theta),%);
RETURN(%);
end:
|
Procedure for solving problem
,
|
r=R
=
:
> |
lap3di:=proc(f,R)
local A,B,so,lp,N;
global LP;N:=degree(f);
Sum(r^n*(A(0,n)*lp(n,0)/2+
Sum((A(k,n)*cos(k*phi)+B(k,n)*sin(k*phi))*lp(n,k),k=1..n)),n=0..N);
so:=value(%):
lp:=LP;
A:=(k,m)->(2*m+1)*(m-k)!/2/(m+k)!/Pi/R^m*
int(int(f*LP(m,k)*cos(k*phi)*sin(theta),phi=-Pi..Pi),theta=0..Pi);
B:=(k,m)->(2*m+1)*(m-k)!/2/(m+k)!/Pi/R^m*
int(int(f*LP(m,k)*sin(k*phi)*sin(theta),phi=-Pi..Pi),theta=0..Pi);
RETURN(map(factor,value(so)));
end:
|
examples
Example 1 ([vlad],16.20.3.)
> |
f:=sin(theta)*(sin(phi)+sin(theta));R:=1;
|
Checking the Solution:
> |
simplify(linalg[laplacian](sol,[r,theta,phi],coords=spherical));
|
> |
simplify(expand(f-subs(r=R,sol)),trig);
|
Example 2 ([vlad],16.21.2.)
> |
f:=sin(3*phi+Pi/4)*sin(theta)^3;R:='R':
|
Checking the Solution:
> |
simplify(linalg[laplacian](sol,[r,theta,phi],coords=spherical));
|
> |
simplify(expand(f-subs(r=R,sol)),trig);
|
Example 3
> |
f:=randpoly([x,y,z],degree=2);R:=3;
|
> |
tr:={x=r*cos(phi)*sin(theta),y=r*sin(phi)*sin(theta),z=r*cos(theta)}:
|
Checking the Solution:
> |
simplify(linalg[laplacian](sol,[r,theta,phi],coords=spherical));
|
> |
simplify(expand(f-subs(r=R,sol)),trig);
|
7 Example
problem
[vlad] 16.21.4.
(
+
)|
r=R
=
solving problem
> |
f:=sin(theta)^2*(sqrt(2)*cos(2*phi+Pi/4)+2*cos(phi)^2);
|
We express
in Fourier series.
> |
S:=int(f,phi=-Pi..Pi)/2/Pi;
|
> |
for k from 1 to Order do S:=S,
|
> |
simplify(int(f*cos(k*phi),phi=-Pi..Pi)/Pi)*cos(k*phi),
|
> |
simplify(int(f*sin(k*phi),phi=-Pi..Pi)/Pi)*sin(k*phi);od;
|
> |
RETURN(sum(S[m],m=1..nops([S])));
|
> |
simplify(expand(ff-f),trig);
|
Then ff=f.
We search solution in the form:
> |
Sum(r^n*(A[0,n]*LP(n,0)+
Sum((A[k,n]*cos(k*phi)+B[k,n]*sin(k*phi))*LP(n,k),k=1..n)),n=0..Order);
|
We define LP(n,k)=P(n, k, cos(theta)), here P(n, k, x) is associated Legendre function.
> |
LP:=proc(n::nonnegint,k::nonnegint)
local i;
orthopoly[P](n,t);
for i to k do diff(%,t) end do;
sin(theta)^k*subs(t=cos(theta),%);
RETURN(%);
end:
|
> |
subs(r=R,so+diff(so,r))-ff:
|
> |
T:=collect(%,[seq(cos(k*phi),k=1..Order),seq(sin(k*phi),k=1..Order)]);
|
We need from identity T=0 compute coefficients.
> |
solve(identity(%%=0,theta),%);
|
> |
solve(identity(%%=0,theta),%);
|
> |
subs(seq(cos(k*phi)=0,k=1..Order),seq(sin(k*phi)=0,k=1..Order),T):
|
> |
solve(identity(%%=0,theta),%):
|
Solution:
Checking the Solution
> |
simplify(linalg[laplacian](sol,[r,theta,phi],coords=spherical));
|
> |
simplify(expand(f-subs(r=R,sol+diff(sol,r))),trig);
|
8 Example
problem
[vlad] 16.24
|
r=R1
=
,
|
r=R2
=
solving problem
> |
#f1:=sin(theta)*sin(phi);f2:=0;#1
#f1:=3*sin(theta)^2*sin(2*phi);f2:=3*cos(theta);#2
#f1:=7*sin(theta)*cos(phi);f2:=7*cos(theta);#3
#f1:=sin(theta)^2*(3-sin(2*phi));f2:=4*f1;#4
#f1:=12*sin(theta)*cos(theta/2)^2*cos(phi);f2:=0;#5
#f1:=sin(2*phi)*sin(theta)^2;f2:=cos(2*phi)*sin(theta)^2;#6
#f1:=cos(phi)*sin(2*theta);f2:=sin(phi)*sin(2*theta);#7
#f1:=31*sin(2*theta)*sin(phi);f2:=31*sin(theta)^2*cos(2*phi);#8
f1:=cos(theta);f2:=cos(phi)*(12*sin(theta)-15*sin(theta)^3);#9
|
We express
1 and f2 in Fourier series.
> |
Order:=max(degree(expand(f1)),degree(expand(f2)));
|
> |
S:=int(f,phi=-Pi..Pi)/2/Pi;
|
> |
for k from 1 to Order do S:=S,
|
> |
simplify(int(f*cos(k*phi),phi=-Pi..Pi)/Pi)*cos(k*phi),
|
> |
simplify(int(f*sin(k*phi),phi=-Pi..Pi)/Pi)*sin(k*phi);
end do;
|
> |
RETURN(sum(S[m],m=1..nops([S])));
|
We search solution in the form:
> |
Sum(r^n*(A[0,n]*LP(n,0)+
Sum((A[k,n]*cos(k*phi)+B[k,n]*sin(k*phi))*LP(n,k),k=1..n)),n=0..Order)+
Sum(r^(-n-1)*(C[0,n]*LP(n,0)+
Sum((C[k,n]*cos(k*phi)+D[k,n]*sin(k*phi))*LP(n,k),k=1..n)),n=0..Order);
|
We define LP(n,k)=P(n, k, cos(theta)), here P(n, k, x) is associated Legendre function.
> |
LP:=proc(n::nonnegint,k::nonnegint)
local i;
orthopoly[P](n,t);
for i to k do diff(%,t) end do;
sin(theta)^k*subs(t=cos(theta),%);
RETURN(%);
end:
|
> |
T1:=collect(%,[seq(cos(k*phi),k=1..Order),seq(sin(k*phi),k=1..Order)]):
|
> |
T2:=collect(%,[seq(cos(k*phi),k=1..Order),seq(sin(k*phi),k=1..Order)]):
|
Next we compute coefficients from identities T1=0 and T2=0 .
> |
solve(identity(%%=0,theta),%);
|
> |
solve(identity(%%=0,theta),%);
|
> |
subs(seq(cos(k*phi)=0,k=1..Order),seq(sin(k*phi)=0,k=1..Order),T1):
|
> |
solve(identity(%%=0,theta),%):
|
> |
solve(identity(%%=0,theta),%);
|
> |
solve(identity(%%=0,theta),%);
|
> |
subs(seq(cos(k*phi)=0,k=1..Order),seq(sin(k*phi)=0,k=1..Order),T):
|
> |
solve(identity(%%=0,theta),%):
|
Solution:
> |
sol:=map(normal,subs(K1,K,so));
|
Checking the Solution
> |
simplify(linalg[laplacian](sol,[r,theta,phi],coords=spherical));
|
> |
combine(expand(f1-subs(r=R1,sol)),trig);
|
> |
combine(expand(f2-subs(r=R2,sol)),trig);
|
While every effort has been made to validate the solutions in this worksheet, Waterloo Maple Inc. and the contributors are not responsible for any errors contained and are not liable for any damages resulting from the use of this material.
Back to contents