Application Center - Maplesoft

App Preview:

Boundary value problems for 3-D elliptic equations (updated to Maple 7)

You can switch back to the summary page by clicking here.

Learn about Maple
Download Application


 

elliptic3d.mws

Boundary value problems for three-dimensional elliptic equations

by Aleksas Domarkas

Vilnius University, Faculty of Mathematics and Informatics,

Naugarduko 24, Vilnius, Lithuania

aleksas@ieva.mif.vu.lt

NOTE: In this session we find  solutions of boundary value problems for three-dimensional

Laplace's , Poisson or Helmholtz equations in regions r<R,  r>R and R1<r<R2.

1 Example

Problem

Solve   boundary-value problem  

                             Delta*u = x*z ,  r1< r < r2,

                                 u| r=r 1 = u1, u| r=r 2  = u2

here r = sqrt(x^2+y^2+z^2), u = u(x,y,z)  ;    r1, r2, u1, u2  -- constants.

Solving method

We consider problem   

Delta*u = x*z  ,  r1< r < r2,

u| r=r1 =0, u| r=r2 =0

and problem  

Delta*u = 0 ,  r1< r < r2,

  w| r=r1 =u1, w| r=r2 =u2.

Then u+w is solution of our problem.  Solutions of these problems are sought in the form

u = v(r)*cos(phi)*sin(theta)*cos(theta),

w = w(r)

Solving problem

>    restart;

>    with(linalg,laplacian):

>    l:=expand(laplacian(u(r,theta,phi),[r,theta,phi], coords=spherical))-x*z;

l := 2/r*diff(u(r,theta,phi),r)+diff(u(r,theta,phi),`$`(r,2))+1/r^2/sin(theta)*cos(theta)*diff(u(r,theta,phi),theta)+1/r^2*diff(u(r,theta,phi),`$`(theta,2))+1/r^2/sin(theta)^2*diff(u(r,theta,phi),`$`(p...


>    tr:={x=r*cos(phi)*sin(theta),y=r*sin(phi)*sin(theta),z=r*cos(theta)};

tr := {x = r*cos(phi)*sin(theta), y = r*sin(phi)*sin(theta), z = r*cos(theta)}

>    l := subs(tr,l);

l := 2/r*diff(u(r,theta,phi),r)+diff(u(r,theta,phi),`$`(r,2))+1/r^2/sin(theta)*cos(theta)*diff(u(r,theta,phi),theta)+1/r^2*diff(u(r,theta,phi),`$`(theta,2))+1/r^2/sin(theta)^2*diff(u(r,theta,phi),`$`(p...
l := 2/r*diff(u(r,theta,phi),r)+diff(u(r,theta,phi),`$`(r,2))+1/r^2/sin(theta)*cos(theta)*diff(u(r,theta,phi),theta)+1/r^2*diff(u(r,theta,phi),`$`(theta,2))+1/r^2/sin(theta)^2*diff(u(r,theta,phi),`$`(p...

>    subs(u(r,theta,phi)=v(r)*cos(phi)*sin(theta)*cos(theta),l):

>    l1 := simplify(%/(cos(phi)*sin(theta)*cos(theta)));

l1 := (diff(v(r),`$`(r,2))*r^2-6*v(r)+2*diff(v(r),r)*r-r^4)/r^2

>    spr := dsolve(l1,{v(r)});

spr := v(r) = r^2*_C2+1/r^3*_C1+1/14*r^4

>    solve({subs(r=r1,rhs(spr)),subs(r=r2,rhs(spr))},{_C1,_C2});

{_C2 = -1/14*(r1^6+r2*r1^5+r2^2*r1^4+r2^3*r1^3+r2^4*r1^2+r2^5*r1+r2^6)/(r1^4+r1^3*r2+r1^2*r2^2+r1*r2^3+r2^4), _C1 = 1/14*r2^5*r1^5*(r1+r2)/(r1^4+r1^3*r2+r1^2*r2^2+r1*r2^3+r2^4)}
{_C2 = -1/14*(r1^6+r2*r1^5+r2^2*r1^4+r2^3*r1^3+r2^4*r1^2+r2^5*r1+r2^6)/(r1^4+r1^3*r2+r1^2*r2^2+r1*r2^3+r2^4), _C1 = 1/14*r2^5*r1^5*(r1+r2)/(r1^4+r1^3*r2+r1^2*r2^2+r1*r2^3+r2^4)}

>    v(r) := subs(%,rhs(spr));

v(r) := -1/14*r^2*(r1^6+r2*r1^5+r2^2*r1^4+r2^3*r1^3+r2^4*r1^2+r2^5*r1+r2^6)/(r1^4+r1^3*r2+r1^2*r2^2+r1*r2^3+r2^4)+1/14/r^3*r2^5*r1^5*(r1+r2)/(r1^4+r1^3*r2+r1^2*r2^2+r1*r2^3+r2^4)+1/14*r^4
v(r) := -1/14*r^2*(r1^6+r2*r1^5+r2^2*r1^4+r2^3*r1^3+r2^4*r1^2+r2^5*r1+r2^6)/(r1^4+r1^3*r2+r1^2*r2^2+r1*r2^3+r2^4)+1/14/r^3*r2^5*r1^5*(r1+r2)/(r1^4+r1^3*r2+r1^2*r2^2+r1*r2^3+r2^4)+1/14*r^4

>    subs(u(r,theta,phi)=w(r),laplacian(u(r,theta,phi),[r,theta,phi], coords=spherical));

1/r^2/sin(theta)*(2*r*sin(theta)*diff(w(r),r)+r^2*sin(theta)*diff(w(r),`$`(r,2))+cos(theta)*diff(w(r),theta)+sin(theta)*diff(w(r),`$`(theta,2))+1/sin(theta)*diff(w(r),`$`(phi,2)))

>    dsolve(%,w(r));

w(r) = _C1+_C2/r

>    solve({subs(r=r1,rhs(%))=u1,subs(r=r2,rhs(%))=u2},{_C1,_C2});

{_C1 = (-u2*r2+u1*r1)/(-r2+r1), _C2 = -r2*r1*(u1-u2)/(-r2+r1)}

>    w(r) := subs(%,rhs(%%));

w(r) := (-u2*r2+u1*r1)/(-r2+r1)-r2*r1*(u1-u2)/(-r2+r1)/r

>    sol:=v(r)*cos(phi)*sin(theta)*cos(theta)+w(r):

Solution

>    u=sol;

u = (-1/14*r^2*(r1^6+r2*r1^5+r2^2*r1^4+r2^3*r1^3+r2^4*r1^2+r2^5*r1+r2^6)/(r1^4+r1^3*r2+r1^2*r2^2+r1*r2^3+r2^4)+1/14/r^3*r2^5*r1^5*(r1+r2)/(r1^4+r1^3*r2+r1^2*r2^2+r1*r2^3+r2^4)+1/14*r^4)*cos(phi)*sin(th...
u = (-1/14*r^2*(r1^6+r2*r1^5+r2^2*r1^4+r2^3*r1^3+r2^4*r1^2+r2^5*r1+r2^6)/(r1^4+r1^3*r2+r1^2*r2^2+r1*r2^3+r2^4)+1/14/r^3*r2^5*r1^5*(r1+r2)/(r1^4+r1^3*r2+r1^2*r2^2+r1*r2^3+r2^4)+1/14*r^4)*cos(phi)*sin(th...
u = (-1/14*r^2*(r1^6+r2*r1^5+r2^2*r1^4+r2^3*r1^3+r2^4*r1^2+r2^5*r1+r2^6)/(r1^4+r1^3*r2+r1^2*r2^2+r1*r2^3+r2^4)+1/14/r^3*r2^5*r1^5*(r1+r2)/(r1^4+r1^3*r2+r1^2*r2^2+r1*r2^3+r2^4)+1/14*r^4)*cos(phi)*sin(th...

Checking the Solution

>    simplify(laplacian(sol,[r,theta,phi], coords=spherical))-subs(tr,x*z);

0

>    simplify(subs(r=r1,sol));

u1

>    simplify(subs(r=r2,sol));

u2

Solution in Cartesian coordinates

>    solve(tr,{r,theta,phi}):

>    allvalues(%):

>    subs(%[1],sol):

>    sol1:=simplify(%):

This is solution in Cartesian coordinates.

Checking the Solution:

>    simplify(laplacian(sol1,[x,y,z])-x*z);

0

>    subs(tr,r=r1,sol1):simplify(%,radical,symbolic):combine(%,trig);

u1

>    subs(tr,r=r2,sol1):simplify(%,radical,symbolic):combine(%,trig);

u2

>   

2 Example

Problem

>    restart;with(linalg,laplacian):with(orthopoly,P):

Solve  three-dimensional interior boundary-value problem

Delta*u = 0 ,  r < R,

u| r=R  = g .

Here r=sqrt(x^2+y^2+z^2), u=u(x,y,z) or u=u(r,phi,theta).

The function g may be polynomial  with variables z and x^2+y^2 or with cos(theta) . 

>    g:=randpoly([z,x^2+y^2],degree=rand(2..5)(),terms=3);

g := 97+50*z^2+79*z^2*(x^2+y^2)

or

>    #g:=randpoly([cos(theta)]);

>   

Solving problem

>    n:=degree(g);

n := 4

>    tr:={x=r*cos(phi)*sin(theta),y=r*sin(phi)*sin(theta),z=r*cos(theta)};

tr := {x = r*cos(phi)*sin(theta), y = r*sin(phi)*sin(theta), z = r*cos(theta)}

>    subs(tr,r=R,g);

97+50*R^2*cos(theta)^2+79*R^2*cos(theta)^2*(R^2*cos(phi)^2*sin(theta)^2+R^2*sin(phi)^2*sin(theta)^2)

>    f:=simplify(expand(%));

f := 97+50*R^2*cos(theta)^2+79*R^4*cos(theta)^2-79*R^4*cos(theta)^4

>    us:=sum(A[k]*r^k*P(k,cos(theta)),k=0..n);

us := A[0]+A[1]*r*cos(theta)+A[2]*r^2*(3/2*cos(theta)^2-1/2)+A[3]*r^3*(5/2*cos(theta)^3-3/2*cos(theta))+A[4]*r^4*(35/8*cos(theta)^4-15/4*cos(theta)^2+3/8)
us := A[0]+A[1]*r*cos(theta)+A[2]*r^2*(3/2*cos(theta)^2-1/2)+A[3]*r^3*(5/2*cos(theta)^3-3/2*cos(theta))+A[4]*r^4*(35/8*cos(theta)^4-15/4*cos(theta)^2+3/8)

>    k:='k': ug:=sum(A[k]*r^k*P[k],k=0..n);

ug := A[0]*P[0]+A[1]*r*P[1]+A[2]*r^2*P[2]+A[3]*r^3*P[3]+A[4]*r^4*P[4]

>    koef:=solve(identity(subs(r=R,us)=f,theta),{seq(A[k],k=0..n)});

koef := {A[3] = 0, A[2] = 100/3+158/21*R^2, A[1] = 0, A[4] = -632/35, A[0] = 97+50/3*R^2+158/15*R^4}

>    subs(koef,us):sol:=expand(%);

sol := 97+50/3*R^2+158/15*R^4+50*r^2*cos(theta)^2-50/3*r^2+79/7*r^2*R^2*cos(theta)^2-79/21*r^2*R^2-79*r^4*cos(theta)^4+474/7*r^4*cos(theta)^2-237/35*r^4
sol := 97+50/3*R^2+158/15*R^4+50*r^2*cos(theta)^2-50/3*r^2+79/7*r^2*R^2*cos(theta)^2-79/21*r^2*R^2-79*r^4*cos(theta)^4+474/7*r^4*cos(theta)^2-237/35*r^4

>     sol1:=subs(koef,ug);

sol1 := (97+50/3*R^2+158/15*R^4)*P[0]+(100/3+158/21*R^2)*r^2*P[2]-632/35*r^4*P[4]

In  Cartesian coordinates:

>    solve(tr,{r,theta,phi}):allvalues(%):
subs(%[1],sol):
solc:=simplify(%);

solc := 97+50/3*R^2+158/15*R^4+100/3*z^2-50/3*y^2-50/3*x^2+158/21*R^2*z^2-79/21*R^2*y^2-79/21*R^2*x^2-632/35*z^4+1896/35*z^2*y^2+1896/35*z^2*x^2-237/35*y^4-474/35*y^2*x^2-237/35*x^4
solc := 97+50/3*R^2+158/15*R^4+100/3*z^2-50/3*y^2-50/3*x^2+158/21*R^2*z^2-79/21*R^2*y^2-79/21*R^2*x^2-632/35*z^4+1896/35*z^2*y^2+1896/35*z^2*x^2-237/35*y^4-474/35*y^2*x^2-237/35*x^4

Solution

Problem:

>    print(laplacian(u(x,y,z),[x,y,z])=0,` if  r<R`);u=g,`  if  r`=R;

diff(u(x,y,z),`$`(x,2))+diff(u(x,y,z),`$`(y,2))+diff(u(x,y,z),`$`(z,2)) = 0, ` if  r<R`

u = 97+50*z^2+79*z^2*(x^2+y^2), `  if  r` = R

Solution:

>    sol;

97+50/3*R^2+158/15*R^4+50*r^2*cos(theta)^2-50/3*r^2+79/7*r^2*R^2*cos(theta)^2-79/21*r^2*R^2-79*r^4*cos(theta)^4+474/7*r^4*cos(theta)^2-237/35*r^4
97+50/3*R^2+158/15*R^4+50*r^2*cos(theta)^2-50/3*r^2+79/7*r^2*R^2*cos(theta)^2-79/21*r^2*R^2-79*r^4*cos(theta)^4+474/7*r^4*cos(theta)^2-237/35*r^4

or

>    sol1;

(97+50/3*R^2+158/15*R^4)*P[0]+(100/3+158/21*R^2)*r^2*P[2]-632/35*r^4*P[4]

where P[n]  is the nth Legendre (spherical) polynomial.

In  Cartesian coordinates:

>    solc;

97+50/3*R^2+158/15*R^4+100/3*z^2-50/3*y^2-50/3*x^2+158/21*R^2*z^2-79/21*R^2*y^2-79/21*R^2*x^2-632/35*z^4+1896/35*z^2*y^2+1896/35*z^2*x^2-237/35*y^4-474/35*y^2*x^2-237/35*x^4
97+50/3*R^2+158/15*R^4+100/3*z^2-50/3*y^2-50/3*x^2+158/21*R^2*z^2-79/21*R^2*y^2-79/21*R^2*x^2-632/35*z^4+1896/35*z^2*y^2+1896/35*z^2*x^2-237/35*y^4-474/35*y^2*x^2-237/35*x^4

>   

Checking the Solution

>    simplify(laplacian(sol,[r,theta,phi],coords=spherical));

0

>    simplify(laplacian(solc,[x,y,z]));

0

>    simplify(subs(tr,solc-g),{x^2+y^2+z^2=R^2,r=R}):

>    combine(expand(%));

0

>    sol1;

(97+50/3*R^2+158/15*R^4)*P[0]+(100/3+158/21*R^2)*r^2*P[2]-632/35*r^4*P[4]

>    subs(seq(P[k]=P(k,cos(theta)),k=0..n),sol1):

>    simplify(%-sol);

0

Then sol=sol1 .

>   

Note

In similar way can solve boundary-value problems in domains r>R and  R1<r<R2.

3 Example

Problem

>    restart;with(linalg,laplacian):

Solve  three-dimensional interior boundary-value problem

Delta*u+a^2*u = 0 ,  r < R,

   diff(u,r) | r=R  = g .

Here r = sqrt(x^2+y^2+z^2) , u = u(x,y,z)  or u = u(r,phi,theta) .

>    g:=cos(theta);

g := cos(theta)

Solving problem

>    with(linalg,laplacian);

[laplacian]

>    assume(a>0);

>    eq:=laplacian(u(r,theta,phi),[r,theta,phi],coords=spherical)+
a^2*u(r,theta,phi)=0:

>    subs(u(r,theta,phi)=v(r)*cos(theta),eq):

>    l:=combine(%/cos(theta));

l := (2*r*diff(v(r),r)+r^2*diff(v(r),`$`(r,2))-2*v(r)+a^2*v(r)*r^2)/r^2 = 0

>    dsolve({l,v(0)<infinity,D(v)(R)=1},v(r));

v(r) = -R^3/(2*R*a*cos(R*a)-2*sin(R*a)+a^2*sin(R*a)*R^2)/r^2*(r*a*cos(r*a)-sin(r*a))

>    sol:=subs(%,v(r)*cos(theta));

sol := -R^3/(2*R*a*cos(R*a)-2*sin(R*a)+a^2*sin(R*a)*R^2)/r^2*(r*a*cos(r*a)-sin(r*a))*cos(theta)

Solution

Problem:

>    Delta*u+a^2*u=0,` if  r<R`;u=g,`  if  r`=R;

Delta*u+a^2*u = 0, ` if  r<R`

u = cos(theta), `  if  r` = R

Solution:

>    u=sol;

u = -R^3/(2*R*a*cos(R*a)-2*sin(R*a)+a^2*sin(R*a)*R^2)/r^2*(r*a*cos(r*a)-sin(r*a))*cos(theta)

>   

Checking the Solution

>    simplify(subs(u(r,theta,phi)=sol,eq));

0 = 0

>    diff(sol,r):

>    simplify(subs(r=R,%));

cos(theta)

>   

4 Example

Problem

Delta*u = 0, r < 1

u| r=1 =f .

We use package orbitals  from share libary  R5 or R4.

>    restart;with(share):readshare(orbitals,science): with(orbitals):

>    assume(theta,real);assume(phi,real);

See ?share and ?share,contents for information about the share library

>    #f:=randpoly([x,y,z],terms=3);

>    f:=x*y*z;

f := x*y*z

Solving problem

>    tr:={x=r*cos(phi)*sin(theta),y=r*sin(phi)*sin(theta),z=r*cos(theta)}:

>    fs:=subs(tr,r=1,f);

fs := cos(phi)*sin(theta)^2*sin(phi)*cos(theta)

>    d:=degree(f);R:=1:

d := 3

We search solution in the form:

>    u=Sum(Sum('a(i,j)*(r/R)^i*Y(i,j)','j'=-'i'..'i'),'i'=0..d);

u = Sum(Sum(a(i,j)*(r/R)^i*Y(i,j),j = -i .. i),i = 0 .. 3)

Here   Y(i,j)   is   ComplexSurfaceHarmonic(i,j,theta,phi)  from orbitals .

>    value(rhs(%));

a(0,0)*Y(0,0)+a(1,-1)*r*Y(1,-1)+a(1,0)*r*Y(1,0)+a(1,1)*r*Y(1,1)+a(2,-2)*r^2*Y(2,-2)+a(2,-1)*r^2*Y(2,-1)+a(2,0)*r^2*Y(2,0)+a(2,1)*r^2*Y(2,1)+a(2,2)*r^2*Y(2,2)+a(3,-3)*r^3*Y(3,-3)+a(3,-2)*r^3*Y(3,-2)+a(3...
a(0,0)*Y(0,0)+a(1,-1)*r*Y(1,-1)+a(1,0)*r*Y(1,0)+a(1,1)*r*Y(1,1)+a(2,-2)*r^2*Y(2,-2)+a(2,-1)*r^2*Y(2,-1)+a(2,0)*r^2*Y(2,0)+a(2,1)*r^2*Y(2,1)+a(2,2)*r^2*Y(2,2)+a(3,-3)*r^3*Y(3,-3)+a(3,-2)*r^3*Y(3,-2)+a(3...
a(0,0)*Y(0,0)+a(1,-1)*r*Y(1,-1)+a(1,0)*r*Y(1,0)+a(1,1)*r*Y(1,1)+a(2,-2)*r^2*Y(2,-2)+a(2,-1)*r^2*Y(2,-1)+a(2,0)*r^2*Y(2,0)+a(2,1)*r^2*Y(2,1)+a(2,2)*r^2*Y(2,2)+a(3,-3)*r^3*Y(3,-3)+a(3,-2)*r^3*Y(3,-2)+a(3...
a(0,0)*Y(0,0)+a(1,-1)*r*Y(1,-1)+a(1,0)*r*Y(1,0)+a(1,1)*r*Y(1,1)+a(2,-2)*r^2*Y(2,-2)+a(2,-1)*r^2*Y(2,-1)+a(2,0)*r^2*Y(2,0)+a(2,1)*r^2*Y(2,1)+a(2,2)*r^2*Y(2,2)+a(3,-3)*r^3*Y(3,-3)+a(3,-2)*r^3*Y(3,-2)+a(3...

>    Y:=(l,m)->ComplexSurfaceHarmonic(l,m,theta,phi):

We compute coefficients:

>    a:=(i,j)->Int(Int(fs*conjugate(Y(i,j))*sin(theta),theta=0..Pi),phi=0..2*Pi):

>    convert(%%%,trig):value(%):

>    evalc(%):

>    expand(%,trig):

>    %;

r^3*sin(theta)^2*cos(theta)*cos(phi)*sin(phi)

Solution:

>    sol:=map(simplify,collect(%,r));

sol := r^3*(1-cos(theta)^2)*cos(theta)*cos(phi)*sin(phi)

>   

Checking the Solution

>    linalg[laplacian](sol,[r,theta,phi],coords=spherical):combine(%,trig);

>    simplify(fs-subs(r=R,sol)):combine(%,trig);

0

0

>   

5 Example

Problem

Delta*u =0, r<1,

u| r=1 = cos(2*phi+Pi/3)*sin(theta)^2  .

Solving problem

>    restart;

>    Order:=2;

Order := 2

 We search solution in the form:

>    Sum(r^n*(A[0,n]*LP(n,0)+
Sum((A[k,n]*cos(k*phi)+B[k,n]*sin(k*phi))*LP(n,k),k=1..n)),n=0..Order);

Sum(r^n*(A[0,n]*LP(n,0)+Sum((A[k,n]*cos(k*phi)+B[k,n]*sin(k*phi))*LP(n,k),k = 1 .. n)),n = 0 .. 2)

Here LP(n,k)=P(n, k, cos(theta)),  P(n, k, x)  is associated  Legendre function. Function LP we define later.

>    so:=value(%);

so := A[0,0]*LP(0,0)+r*(A[0,1]*LP(1,0)+(A[1,1]*cos(phi)+B[1,1]*sin(phi))*LP(1,1))+r^2*(A[0,2]*LP(2,0)+(A[1,2]*cos(phi)+B[1,2]*sin(phi))*LP(2,1)+(A[2,2]*cos(2*phi)+B[2,2]*sin(2*phi))*LP(2,2))
so := A[0,0]*LP(0,0)+r*(A[0,1]*LP(1,0)+(A[1,1]*cos(phi)+B[1,1]*sin(phi))*LP(1,1))+r^2*(A[0,2]*LP(2,0)+(A[1,2]*cos(phi)+B[1,2]*sin(phi))*LP(2,1)+(A[2,2]*cos(2*phi)+B[2,2]*sin(2*phi))*LP(2,2))

>    fc:=combine(subs(r=1,so));

fc := A[0,0]*LP(0,0)+A[0,1]*LP(1,0)+LP(1,1)*A[1,1]*cos(phi)+LP(1,1)*B[1,1]*sin(phi)+A[0,2]*LP(2,0)+LP(2,1)*A[1,2]*cos(phi)+LP(2,1)*B[1,2]*sin(phi)+LP(2,2)*A[2,2]*cos(2*phi)+LP(2,2)*B[2,2]*sin(2*phi)
fc := A[0,0]*LP(0,0)+A[0,1]*LP(1,0)+LP(1,1)*A[1,1]*cos(phi)+LP(1,1)*B[1,1]*sin(phi)+A[0,2]*LP(2,0)+LP(2,1)*A[1,2]*cos(phi)+LP(2,1)*B[1,2]*sin(phi)+LP(2,2)*A[2,2]*cos(2*phi)+LP(2,2)*B[2,2]*sin(2*phi)

>    f:=cos(2*phi+Pi/3)*sin(theta)^2;

f := cos(2*phi+1/3*Pi)*sin(theta)^2

>    applyop(expand,1,f);

(cos(phi)^2-1/2-sqrt(3)*sin(phi)*cos(phi))*sin(theta)^2

>    applyop(combine,1,%);

(1/2*cos(2*phi)-1/2*sin(2*phi)*sqrt(3))*sin(theta)^2

>    collect(%,[cos(2*phi),sin(2*phi)]);

1/2*sin(theta)^2*cos(2*phi)-1/2*sin(2*phi)*sqrt(3)*sin(theta)^2

>    dp:=collect(%,[sin(phi),cos(phi)]);

dp := 1/2*sin(theta)^2*cos(2*phi)-1/2*sin(2*phi)*sqrt(3)*sin(theta)^2

>    sk:=collect(fc-dp,[sin(phi),cos(phi),cos(2*phi),sin(2*phi)]);

sk := (LP(1,1)*B[1,1]+B[1,2]*LP(2,1))*sin(phi)+(A[1,2]*LP(2,1)+LP(1,1)*A[1,1])*cos(phi)+(A[2,2]*LP(2,2)-1/2*sin(theta)^2)*cos(2*phi)+(1/2*sqrt(3)*sin(theta)^2+LP(2,2)*B[2,2])*sin(2*phi)+A[0,0]*LP(0,0)+...
sk := (LP(1,1)*B[1,1]+B[1,2]*LP(2,1))*sin(phi)+(A[1,2]*LP(2,1)+LP(1,1)*A[1,1])*cos(phi)+(A[2,2]*LP(2,2)-1/2*sin(theta)^2)*cos(2*phi)+(1/2*sqrt(3)*sin(theta)^2+LP(2,2)*B[2,2])*sin(2*phi)+A[0,0]*LP(0,0)+...
sk := (LP(1,1)*B[1,1]+B[1,2]*LP(2,1))*sin(phi)+(A[1,2]*LP(2,1)+LP(1,1)*A[1,1])*cos(phi)+(A[2,2]*LP(2,2)-1/2*sin(theta)^2)*cos(2*phi)+(1/2*sqrt(3)*sin(theta)^2+LP(2,2)*B[2,2])*sin(2*phi)+A[0,0]*LP(0,0)+...

>    LP:=proc(n::nonnegint,k::nonnegint)
local i;
orthopoly[P](n,t);
for i to k do diff(%,t) end do;
sin(theta)^k*subs(t=cos(theta),%);
RETURN(%);
end;

LP := proc (n::nonnegint, k::nonnegint) local i; orthopoly[P](n,t); for i to k do diff(%,t) end do; sin(theta)^k*subs(t = cos(theta),%); RETURN(%) end proc
LP := proc (n::nonnegint, k::nonnegint) local i; orthopoly[P](n,t); for i to k do diff(%,t) end do; sin(theta)^k*subs(t = cos(theta),%); RETURN(%) end proc
LP := proc (n::nonnegint, k::nonnegint) local i; orthopoly[P](n,t); for i to k do diff(%,t) end do; sin(theta)^k*subs(t = cos(theta),%); RETURN(%) end proc
LP := proc (n::nonnegint, k::nonnegint) local i; orthopoly[P](n,t); for i to k do diff(%,t) end do; sin(theta)^k*subs(t = cos(theta),%); RETURN(%) end proc

>    sk;

(sin(theta)*B[1,1]+3*B[1,2]*sin(theta)*cos(theta))*sin(phi)+(3*A[1,2]*sin(theta)*cos(theta)+sin(theta)*A[1,1])*cos(phi)+(3*A[2,2]*sin(theta)^2-1/2*sin(theta)^2)*cos(2*phi)+(1/2*sqrt(3)*sin(theta)^2+3*s...
(sin(theta)*B[1,1]+3*B[1,2]*sin(theta)*cos(theta))*sin(phi)+(3*A[1,2]*sin(theta)*cos(theta)+sin(theta)*A[1,1])*cos(phi)+(3*A[2,2]*sin(theta)^2-1/2*sin(theta)^2)*cos(2*phi)+(1/2*sqrt(3)*sin(theta)^2+3*s...
(sin(theta)*B[1,1]+3*B[1,2]*sin(theta)*cos(theta))*sin(phi)+(3*A[1,2]*sin(theta)*cos(theta)+sin(theta)*A[1,1])*cos(phi)+(3*A[2,2]*sin(theta)^2-1/2*sin(theta)^2)*cos(2*phi)+(1/2*sqrt(3)*sin(theta)^2+3*s...

Next we compute coefficients:

>    K:={}:

>    coeff(sk,sin(phi));

>    indets(%,indexed);

>    solve(identity(%%,theta),%);K:=K union %;

sin(theta)*B[1,1]+3*B[1,2]*sin(theta)*cos(theta)

{B[1,2], B[1,1]}

{B[1,2] = 0, B[1,1] = 0}

K := {B[1,2] = 0, B[1,1] = 0}

>    coeff(sk,cos(phi));

>    indets(%,indexed);

>    solve(identity(%%,theta),%);K:=K union %;

3*A[1,2]*sin(theta)*cos(theta)+sin(theta)*A[1,1]

{A[1,2], A[1,1]}

{A[1,2] = 0, A[1,1] = 0}

K := {B[1,2] = 0, B[1,1] = 0, A[1,2] = 0, A[1,1] = 0}

>    coeff(sk,sin(2*phi));

>    indets(%,indexed);

>    solve(identity(%%,theta),%);K:=K union %;

1/2*sqrt(3)*sin(theta)^2+3*sin(theta)^2*B[2,2]

{B[2,2]}

{B[2,2] = -1/6*sqrt(3)}

K := {B[1,2] = 0, B[1,1] = 0, A[1,2] = 0, A[1,1] = 0, B[2,2] = -1/6*sqrt(3)}

>    coeff(sk,cos(2*phi));

>    indets(%,indexed);

>    solve(identity(%%,theta),%);K:=K union %;

3*A[2,2]*sin(theta)^2-1/2*sin(theta)^2

{A[2,2]}

{A[2,2] = 1/6}

K := {B[1,2] = 0, B[1,1] = 0, A[1,2] = 0, A[1,1] = 0, B[2,2] = -1/6*sqrt(3), A[2,2] = 1/6}

>    subs(sin(phi)=0,cos(phi)=0,cos(2*phi)=0,sin(2*phi)=0,sk);

>    indets(%,indexed);

>    solve(identity(%%,theta),%);K:=K union %;

A[0,0]+A[0,1]*cos(theta)+A[0,2]*(3/2*cos(theta)^2-1/2)

{A[0,1], A[0,2], A[0,0]}

{A[0,2] = 0, A[0,1] = 0, A[0,0] = 0}

K := {B[1,2] = 0, B[1,1] = 0, A[1,2] = 0, A[1,1] = 0, A[0,2] = 0, B[2,2] = -1/6*sqrt(3), A[0,1] = 0, A[2,2] = 1/6, A[0,0] = 0}

>    solution:=subs(K,so);

solution := 3*r^2*(1/6*cos(2*phi)-1/6*sqrt(3)*sin(2*phi))*sin(theta)^2

Other form of the solution:

>    sol:=r^2*cos(2*phi+Pi/3)*sin(theta)^2;

sol := r^2*cos(2*phi+1/3*Pi)*sin(theta)^2

>    expand(solution-sol);

0

>   

Checking the Solution

>    combine(linalg[laplacian](sol,[r,theta,phi],coords=spherical));

>    f-subs(r=1,sol);

0

0

>   

6 Example

problem

Delta*u = 0, r < R
u | r=R = f(phi,theta)

theory

u = Sum(r^n*(A[0,n]*LP(n,0)/2+Sum((A[k,n]*cos(k*phi)+B[k,n]*sin(k*phi))*LP(n,k),k = 1 .. n)),n = 0 .. infinity)

where

A[k,n] = (2*n+1)*(n-k)!/2/(n+k)!/Pi/(R^n)*int(int(f*LP(n,k)*cos(k*phi)*sin(theta),phi = -Pi .. Pi),theta = 0 .. Pi)

B[k,n] = (2*n+1)*(n-k)!*int(int(f*LP(n,k)*sin(k*phi)*sin(theta),phi = -Pi .. Pi),theta = 0 .. Pi)/(2*(n+k)!*Pi*R^n)

LP(n,k) = P(n,k,cos(theta)) ,   P(n,k,x)   is associated  Legendre function.

procedures

>    restart;

Procedure for computing LP(n,k)=P(n, k, cos(theta)), here  P(n, k, x)  is associated  Legendre function.

>    LP:=proc(n::nonnegint,k::nonnegint)
local i;
orthopoly[P](n,t);
for i to k do diff(%,t) end do;
sin(theta)^k*subs(t=cos(theta),%);
RETURN(%);
end:

Procedure for solving problem   Delta*u = 0, r < R ,    u | r=R = f(phi,theta)  :

>    lap3di:=proc(f,R)
local A,B,so,lp,N;
global LP;N:=degree(f);
Sum(r^n*(A(0,n)*lp(n,0)/2+
Sum((A(k,n)*cos(k*phi)+B(k,n)*sin(k*phi))*lp(n,k),k=1..n)),n=0..N);
so:=value(%):
lp:=LP;
A:=(k,m)->(2*m+1)*(m-k)!/2/(m+k)!/Pi/R^m*
int(int(f*LP(m,k)*cos(k*phi)*sin(theta),phi=-Pi..Pi),theta=0..Pi);
B:=(k,m)->(2*m+1)*(m-k)!/2/(m+k)!/Pi/R^m*
int(int(f*LP(m,k)*sin(k*phi)*sin(theta),phi=-Pi..Pi),theta=0..Pi);
RETURN(map(factor,value(so)));
end:

examples

Example 1 ([vlad],16.20.3.)

>    f:=sin(theta)*(sin(phi)+sin(theta));R:=1;

f := sin(theta)*(sin(phi)+sin(theta))

R := 1

>    sol:=lap3di(f,R);

sol := 2/3+r*sin(phi)*sin(theta)-1/3*r^2*(3*cos(theta)^2-1)

Checking the Solution:

>    simplify(linalg[laplacian](sol,[r,theta,phi],coords=spherical));

>    simplify(expand(f-subs(r=R,sol)),trig);

0

0

Example 2 ([vlad],16.21.2.)

>    f:=sin(3*phi+Pi/4)*sin(theta)^3;R:='R':

f := sin(3*phi+1/4*Pi)*sin(theta)^3

>    sol:=lap3di(f,R);

sol := 1/2*r^3*2^(1/2)*(cos(3*phi)+sin(3*phi))/R^3*sin(theta)^3

Checking the Solution:

>    simplify(linalg[laplacian](sol,[r,theta,phi],coords=spherical));

>    simplify(expand(f-subs(r=R,sol)),trig);

0

0

Example 3

>    f:=randpoly([x,y,z],degree=2);R:=3;

f := -12-18*x+31*y-26*x^2-62*x*y+y^2

R := 3

>    tr:={x=r*cos(phi)*sin(theta),y=r*sin(phi)*sin(theta),z=r*cos(theta)}:

>    f:=subs(tr,r=R,f);

f := -12-54*cos(phi)*sin(theta)+93*sin(phi)*sin(theta)-234*cos(phi)^2*sin(theta)^2-558*cos(phi)*sin(theta)^2*sin(phi)+9*sin(phi)^2*sin(theta)^2
f := -12-54*cos(phi)*sin(theta)+93*sin(phi)*sin(theta)-234*cos(phi)^2*sin(theta)^2-558*cos(phi)*sin(theta)^2*sin(phi)+9*sin(phi)^2*sin(theta)^2

>    sol:=lap3di(f,R);

sol := -87-r*(18*cos(phi)-31*sin(phi))*sin(theta)+1/6*r^2*(75*cos(theta)^2-25-81*sin(theta)^2*cos(2*phi)-186*sin(theta)^2*sin(2*phi))
sol := -87-r*(18*cos(phi)-31*sin(phi))*sin(theta)+1/6*r^2*(75*cos(theta)^2-25-81*sin(theta)^2*cos(2*phi)-186*sin(theta)^2*sin(2*phi))

Checking the Solution:

>    simplify(linalg[laplacian](sol,[r,theta,phi],coords=spherical));

>    simplify(expand(f-subs(r=R,sol)),trig);

0

0

>   

7 Example

problem

[vlad] 16.21.4.

Delta*u = 0, r < R
(
u + u[r] )| r=R = sin(theta)^2*(sqrt(2)*cos(2*phi+Pi/4)+2*cos(phi)^2)

solving problem

>    restart;

>    f:=sin(theta)^2*(sqrt(2)*cos(2*phi+Pi/4)+2*cos(phi)^2);

f := sin(theta)^2*(sqrt(2)*cos(2*phi+1/4*Pi)+2*cos(phi)^2)

We express f   in Fourier series.

>    select(has,f,phi);

sqrt(2)*cos(2*phi+1/4*Pi)+2*cos(phi)^2

>    Order:=degree(%);

Order := 2

>    fseries:=proc(f)

>    local k,S;

>    S:=int(f,phi=-Pi..Pi)/2/Pi;

>    for k from 1 to Order do S:=S,

>    simplify(int(f*cos(k*phi),phi=-Pi..Pi)/Pi)*cos(k*phi),

>    simplify(int(f*sin(k*phi),phi=-Pi..Pi)/Pi)*sin(k*phi);od;

>    RETURN(sum(S[m],m=1..nops([S])));

>    end:

>   

>    ff:=fseries(f);

ff := sin(theta)^2+(2-2*cos(theta)^2)*cos(2*phi)+(-1+cos(theta)^2)*sin(2*phi)

>    simplify(expand(ff-f),trig);

0

Then ff=f.

 We search solution in the form:

>    Sum(r^n*(A[0,n]*LP(n,0)+
Sum((A[k,n]*cos(k*phi)+B[k,n]*sin(k*phi))*LP(n,k),k=1..n)),n=0..Order);

Sum(r^n*(A[0,n]*LP(n,0)+Sum((A[k,n]*cos(k*phi)+B[k,n]*sin(k*phi))*LP(n,k),k = 1 .. n)),n = 0 .. 2)

>    so:=value(%);

so := A[0,0]*LP(0,0)+r*(A[0,1]*LP(1,0)+(A[1,1]*cos(phi)+B[1,1]*sin(phi))*LP(1,1))+r^2*(A[0,2]*LP(2,0)+(A[1,2]*cos(phi)+B[1,2]*sin(phi))*LP(2,1)+(A[2,2]*cos(2*phi)+B[2,2]*sin(2*phi))*LP(2,2))
so := A[0,0]*LP(0,0)+r*(A[0,1]*LP(1,0)+(A[1,1]*cos(phi)+B[1,1]*sin(phi))*LP(1,1))+r^2*(A[0,2]*LP(2,0)+(A[1,2]*cos(phi)+B[1,2]*sin(phi))*LP(2,1)+(A[2,2]*cos(2*phi)+B[2,2]*sin(2*phi))*LP(2,2))

We define  LP(n,k)=P(n, k, cos(theta)), here  P(n, k, x)  is associated  Legendre function.

>    LP:=proc(n::nonnegint,k::nonnegint)
local i;
orthopoly[P](n,t);
for i to k do diff(%,t) end do;
sin(theta)^k*subs(t=cos(theta),%);
RETURN(%);
end:

>    subs(r=R,so+diff(so,r))-ff:

>    T:=collect(%,[seq(cos(k*phi),k=1..Order),seq(sin(k*phi),k=1..Order)]);

T := (6*R*A[1,2]*sin(theta)*cos(theta)+R*A[1,1]*sin(theta)+A[1,1]*sin(theta)+3*R^2*A[1,2]*sin(theta)*cos(theta))*cos(phi)+(3*R^2*A[2,2]*sin(theta)^2-2+2*cos(theta)^2+6*R*A[2,2]*sin(theta)^2)*cos(2*phi)...
T := (6*R*A[1,2]*sin(theta)*cos(theta)+R*A[1,1]*sin(theta)+A[1,1]*sin(theta)+3*R^2*A[1,2]*sin(theta)*cos(theta))*cos(phi)+(3*R^2*A[2,2]*sin(theta)^2-2+2*cos(theta)^2+6*R*A[2,2]*sin(theta)^2)*cos(2*phi)...
T := (6*R*A[1,2]*sin(theta)*cos(theta)+R*A[1,1]*sin(theta)+A[1,1]*sin(theta)+3*R^2*A[1,2]*sin(theta)*cos(theta))*cos(phi)+(3*R^2*A[2,2]*sin(theta)^2-2+2*cos(theta)^2+6*R*A[2,2]*sin(theta)^2)*cos(2*phi)...
T := (6*R*A[1,2]*sin(theta)*cos(theta)+R*A[1,1]*sin(theta)+A[1,1]*sin(theta)+3*R^2*A[1,2]*sin(theta)*cos(theta))*cos(phi)+(3*R^2*A[2,2]*sin(theta)^2-2+2*cos(theta)^2+6*R*A[2,2]*sin(theta)^2)*cos(2*phi)...
T := (6*R*A[1,2]*sin(theta)*cos(theta)+R*A[1,1]*sin(theta)+A[1,1]*sin(theta)+3*R^2*A[1,2]*sin(theta)*cos(theta))*cos(phi)+(3*R^2*A[2,2]*sin(theta)^2-2+2*cos(theta)^2+6*R*A[2,2]*sin(theta)^2)*cos(2*phi)...

We need from identity T=0 compute coefficients.

>    K:={}:

>    for k to Order do

>    coeff(T,sin(k*phi));

>    indets(%,indexed);

>    solve(identity(%%=0,theta),%);

>    K:=K union %; od:

>    for k  to Order do

>    coeff(T,cos(k*phi));

>    indets(%,indexed);

>    solve(identity(%%=0,theta),%);

>    K:=K union %; od:

>    subs(seq(cos(k*phi)=0,k=1..Order),seq(sin(k*phi)=0,k=1..Order),T):

>    indets(%,indexed):

>    solve(identity(%%=0,theta),%):

>    K:=K union %;

K := {A[2,2] = 2/3*1/(R*(2+R)), A[0,1] = 0, B[2,2] = -1/3*1/(R*(2+R)), A[0,2] = -2/3*1/(R*(2+R)), B[1,2] = 0, A[0,0] = 2/3, B[1,1] = 0, A[1,2] = 0, A[1,1] = 0}
K := {A[2,2] = 2/3*1/(R*(2+R)), A[0,1] = 0, B[2,2] = -1/3*1/(R*(2+R)), A[0,2] = -2/3*1/(R*(2+R)), B[1,2] = 0, A[0,0] = 2/3, B[1,1] = 0, A[1,2] = 0, A[1,1] = 0}

Solution:

>    sol:=subs(K,so);

sol := 2/3+r^2*(-2/3/R/(2+R)*(3/2*cos(theta)^2-1/2)+3*(2/3/R/(2+R)*cos(2*phi)-1/3*1/R/(2+R)*sin(2*phi))*sin(theta)^2)

>   

Checking the Solution

>    simplify(linalg[laplacian](sol,[r,theta,phi],coords=spherical));

>    simplify(expand(f-subs(r=R,sol+diff(sol,r))),trig);

>   

0

0

>   

8 Example

problem

[vlad] 16.24

Delta*u = 0, R1 < r, r < R2
u | r=R1 = f1 , u | r=R2 = f2

solving problem

>    restart;

>    R1:=1;R2:=2;

R1 := 1

R2 := 2

>    #f1:=sin(theta)*sin(phi);f2:=0;#1
#f1:=3*sin(theta)^2*sin(2*phi);f2:=3*cos(theta);#2
#f1:=7*sin(theta)*cos(phi);f2:=7*cos(theta);#3
#f1:=sin(theta)^2*(3-sin(2*phi));f2:=4*f1;#4
#f1:=12*sin(theta)*cos(theta/2)^2*cos(phi);f2:=0;#5
#f1:=sin(2*phi)*sin(theta)^2;f2:=cos(2*phi)*sin(theta)^2;#6
#f1:=cos(phi)*sin(2*theta);f2:=sin(phi)*sin(2*theta);#7
#f1:=31*sin(2*theta)*sin(phi);f2:=31*sin(theta)^2*cos(2*phi);#8
f1:=cos(theta);f2:=cos(phi)*(12*sin(theta)-15*sin(theta)^3);#9

f1 := cos(theta)

f2 := cos(phi)*(12*sin(theta)-15*sin(theta)^3)

We express f  1 and f2 in Fourier series.

>    Order:=max(degree(expand(f1)),degree(expand(f2)));

Order := 4

>    fseries:=proc(f)

>    local k,S;

>    S:=int(f,phi=-Pi..Pi)/2/Pi;

>    for k from 1 to Order do S:=S,

>    simplify(int(f*cos(k*phi),phi=-Pi..Pi)/Pi)*cos(k*phi),

>    simplify(int(f*sin(k*phi),phi=-Pi..Pi)/Pi)*sin(k*phi);
end do;

>    RETURN(sum(S[m],m=1..nops([S])));

>    end proc:

>    ff1:=fseries(f1);

ff1 := cos(theta)

>    ff2:=fseries(f2);

ff2 := (-3*sin(theta)+15*sin(theta)*cos(theta)^2)*cos(phi)

 We search solution in the form:

>    Sum(r^n*(A[0,n]*LP(n,0)+
Sum((A[k,n]*cos(k*phi)+B[k,n]*sin(k*phi))*LP(n,k),k=1..n)),n=0..Order)+
Sum(r^(-n-1)*(C[0,n]*LP(n,0)+
Sum((C[k,n]*cos(k*phi)+D[k,n]*sin(k*phi))*LP(n,k),k=1..n)),n=0..Order);

Sum(r^n*(A[0,n]*LP(n,0)+Sum((A[k,n]*cos(k*phi)+B[k,n]*sin(k*phi))*LP(n,k),k = 1 .. n)),n = 0 .. 4)+Sum(r^(-n-1)*(C[0,n]*LP(n,0)+Sum((C[k,n]*cos(k*phi)+D[k,n]*sin(k*phi))*LP(n,k),k = 1 .. n)),n = 0 .. 4...
Sum(r^n*(A[0,n]*LP(n,0)+Sum((A[k,n]*cos(k*phi)+B[k,n]*sin(k*phi))*LP(n,k),k = 1 .. n)),n = 0 .. 4)+Sum(r^(-n-1)*(C[0,n]*LP(n,0)+Sum((C[k,n]*cos(k*phi)+D[k,n]*sin(k*phi))*LP(n,k),k = 1 .. n)),n = 0 .. 4...

>    so:=value(%):

We define  LP(n,k)=P(n, k, cos(theta)), here  P(n, k, x)  is associated  Legendre function.

>    LP:=proc(n::nonnegint,k::nonnegint)
local i;
orthopoly[P](n,t);
for i to k do diff(%,t) end do;
sin(theta)^k*subs(t=cos(theta),%);
RETURN(%);
end:

>    subs(r=R1,so-ff1):

>    T1:=collect(%,[seq(cos(k*phi),k=1..Order),seq(sin(k*phi),k=1..Order)]):

>    subs(r=R2,so-ff2):

>    T2:=collect(%,[seq(cos(k*phi),k=1..Order),seq(sin(k*phi),k=1..Order)]):

Next we compute coefficients  from identities  T1=0 and T2=0  .

>    K:={}:

>    for k to Order do

>    coeff(T1,sin(k*phi));

>    indets(%,indexed);

>    solve(identity(%%=0,theta),%);

>    K:=K union %; od:

>    for k  to Order do

>    coeff(T1,cos(k*phi));

>    indets(%,indexed);

>    solve(identity(%%=0,theta),%);

>    K:=K union %; od:

>    subs(seq(cos(k*phi)=0,k=1..Order),seq(sin(k*phi)=0,k=1..Order),T1):

>    indets(%,indexed):

>    solve(identity(%%=0,theta),%):

>    K1:=K union %:

>    T:=subs(K1,T2):

>    K:={}:

>    for k to Order do

>    coeff(T,sin(k*phi));

>    indets(%,indexed);

>    solve(identity(%%=0,theta),%);

>    K:=K union %; od:

>    for k  to Order do

>    coeff(T,cos(k*phi));

>    indets(%,indexed);

>    solve(identity(%%=0,theta),%);

>    K:=K union %; od:

>    subs(seq(cos(k*phi)=0,k=1..Order),seq(sin(k*phi)=0,k=1..Order),T):

>    indets(%,indexed):

>    solve(identity(%%=0,theta),%):

>    K:=K union %;

K := {C[4,4] = 0, C[1,4] = 0, D[4,4] = 0, A[1,2] = 0, C[1,3] = -32/127, A[1,1] = 0, C[2,4] = 0, C[2,3] = 0, D[3,4] = 0, A[2,2] = 0, A[0,4] = 0, D[1,4] = 0, D[1,3] = 0, A[0,3] = 0, B[1,1] = 0, A[0,0] = ...
K := {C[4,4] = 0, C[1,4] = 0, D[4,4] = 0, A[1,2] = 0, C[1,3] = -32/127, A[1,1] = 0, C[2,4] = 0, C[2,3] = 0, D[3,4] = 0, A[2,2] = 0, A[0,4] = 0, D[1,4] = 0, D[1,3] = 0, A[0,3] = 0, B[1,1] = 0, A[0,0] = ...
K := {C[4,4] = 0, C[1,4] = 0, D[4,4] = 0, A[1,2] = 0, C[1,3] = -32/127, A[1,1] = 0, C[2,4] = 0, C[2,3] = 0, D[3,4] = 0, A[2,2] = 0, A[0,4] = 0, D[1,4] = 0, D[1,3] = 0, A[0,3] = 0, B[1,1] = 0, A[0,0] = ...

Solution:

>    sol:=map(normal,subs(K1,K,so));

sol := -1/7*r*cos(theta)+48/127*r^3*cos(phi)*sin(theta)*(5*cos(theta)^2-1)+8/7/r^2*cos(theta)-48/127*cos(phi)*sin(theta)*(5*cos(theta)^2-1)/r^4

>   

Checking the Solution

>    simplify(linalg[laplacian](sol,[r,theta,phi],coords=spherical));

>    combine(expand(f1-subs(r=R1,sol)),trig);

>    combine(expand(f2-subs(r=R2,sol)),trig);

0

0

0

>   

While every effort has been made to validate the solutions in this worksheet, Waterloo Maple Inc. and the contributors are not responsible for any errors contained and are not liable for any damages resulting from the use of this material.

Back to contents