C02-3.mws
COMPLEX ANALYSIS: Maple Worksheets, 2001
(c) John H. Mathews Russell W. Howell
mathews@fullerton.edu howell@westmont.edu
Complimentary software to accompany the textbook:
COMPLEX ANALYSIS: for Mathematics & Engineering, 4th Ed, 2001, ISBN: 0-7637-1425-9
Jones and Bartlett Publishers, Inc., 40 Tall Pine Drive, Sudbury, MA 01776
Tele. (800) 832-0034; FAX: (508) 443-8000, E-mail: mkt@jbpub.com, http://www.jbpub.com/
CHAPTER 2 COMPLEX FUNCTIONS
Section 2.3 The Mappings
and
The mapping
or
can be expressed in polar coordinates by the function
.
The mapping
can be expressed in polar coordinates
by the function
=
.
Load Maple's "eliminate" and "conformal mapping" procedures.
Make sure this is done only ONCE during a Maple session.
> |
readlib(eliminate):
with(plots): |
Warning, the name changecoords has been redefined
Definition 2.1: Principal Square Root
The function
=
=
, for
,
is called the principal square root function.
Example 2.12, Page 63. The transformation
maps lines onto lines or parabolas.
(a) Find the image of the vertical line
.
> |
x:='x':y:='y':u:='u':v:='v':U:='U':V:='V':
eqns1 := {u = x^2 - y^2, v = 2*x*y}: eqns1;
`Substitute x=a in the previous equations.`;
eqns2 := subs(x=a, eqns1): eqns2;
`Eliminate y in the previous equations.`;
eqns3 := eliminate(eqns2, y): eqns3;
`Solve for u in the previous equations.`;
solset := [solve(eqns3[2][1], u)]:
`u ` = solset[1];
u1 := v -> expand(solset[1]):
`u ` = u1(v); |
Hence, the image of the vertical line
is a parabola.
(b) Find the image of the vertical line
.
> |
x:='x':y:='y':u:='u':v:='v':U:='U':V:='V':
eqns1 := {u = x^2 - y^2, v = 2*x*y}: eqns1;
`Substitute y=b in the previous equations.`;
eqns2 := subs(y=b, eqns1): eqns2;
`Eliminate x in the previous equations.`;
eqns3 := eliminate(eqns2, x): eqns3;
`Solve for u in the previous equations.`;
solset := [solve(eqns3[2][1], u)]:
`u ` = solset[1];
u2 := v -> expand(solset[1]):
`u ` = u2(v); |
Hence, the image of the vertical line
is a parabola.
> |
f:='f': z:='z':
f := z -> z^2:
`f(z) ` = f(z);
conformal(f(z), z=0..0.5+2*I,
title=`w = z^2`,
grid=[11,11],numxy=[50,50],
scaling=constrained,
labels=[`u `,` v`],
view=[-4.1..0.3,-0.1..2.1]); |
![[Plot]](/view.aspx?SI=4606/C02-3_35.gif)
Example 2.13, Page 65. The transformation
maps lines onto lines or hyperbolas.
> |
f:='f': z:='z':
f := z -> z^(1/2):
`f(z) ` = f(z);
conformal(f(z), z=-4..4+4*I,
title=`w = z^(1/2)`,
grid=[9,9],numxy=[50,50],
scaling=constrained,
labels=[`u `,`v `],
view=[-0.1..2.5,-0.1..2.5]); |
![[Plot]](/view.aspx?SI=4606/C02-3_38.gif)
Definition 2.2: Principal n-th root
The function
=
=
, for
,
is called the principal n-th root function.
End of Section 2.3.