Application Center - Maplesoft

App Preview:

Pendulum with a moving pivot

You can switch back to the summary page by clicking here.

Learn about Maple
Download Application


 

Image 

Pendulum with a moving pivot 

Carl Madigan 

Nova Scotia Agricultural College 

Truro, N.S.  B2N 5E3 

Introduction 

 

The problem being considered is a non-linear pendulum where the point of suspension is moving.  Damping is ignored but can easily be included. 

                   Image 

If  X represents the horizontal and Y the vertical components of the motion of the pivot then by resloving the accelerations along the pendulum we have 

                                Typesetting:-mrow(Typesetting:-mi(   where g is the acceleration due to gravity. 

                         Image 

 

                                     Typesetting:-mrow(Typesetting:-mi( 

      the pendulum's Typesetting:-mrow(Typesetting:-mi( Typesetting:-mrow(Typesetting:-mfenced(Typesetting:-mrow(Typesetting:-mi( 

                             Typesetting:-mrow(Typesetting:-mi(  

                    Typesetting:-mrow(Typesetting:-mi(
Typesetting:-mrow(Typesetting:-mi(
Typesetting:-mrow(Typesetting:-mi(
 

 

 

    ImageTypesetting:-mrow(Typesetting:-mi( 

Setting F = ma and equating  

                                     Typesetting:-mrow(Typesetting:-mo( Typesetting:-mrow(Typesetting:-mo(  

Typesetting:-mrow(Typesetting:-mi(   

           Typesetting:-mrow(Typesetting:-mo( 

elliminating T from these two equations we have 

                    Typesetting:-mrow(Typesetting:-mo(Typesetting:-mrow(Typesetting:-mi(
Typesetting:-mrow(Typesetting:-mi(
Typesetting:-mrow(Typesetting:-mi(
 

simplifying       Typesetting:-mrow(Typesetting:-mfrac(Typesetting:-mrow(Typesetting:-msup(Typesetting:-mo(                   

We will assume L =1 and consider three types of motion for the pivot      a)  horizontally    Typesetting:-mrow(Typesetting:-mi( 

                                                                                                             b)  vertically       X = 0     Typesetting:-mrow(Typesetting:-mi(Typesetting:-mrow(Typesetting:-mo(   

                                                                                                             c)  circular         Typesetting:-mrow(Typesetting:-mi( Typesetting:-mrow(Typesetting:-mi(   

In the examples below XX(t) and YY(t) are used to define the pivot  

restart; -1; with(plots); -1; with(DEtools); -1 

 

Example 1    Horizontal motion of the pivot 

 

XX := proc (t) options operator, arrow; .5*cos(1.25*t-1/2*Pi) end proc 

 

deq1 := (diff(theta(t), t, t))+(diff(XX(t), t, t))*cos(theta(t))+9.81*sin(theta(t)) = 0 

slna := dsolve({theta(0) = .5, (D(theta))(0) = 1, deq1}, theta(t), numeric) 

 

Plot of the positon wrt time  

 

odeplot(slna, [t, theta(t)], t = 0 .. 60) 

 

animation of the motion for this pendulum 

 

Typesetting:-mrow(Typesetting:-mo(
Typesetting:-mrow(Typesetting:-mo(
Typesetting:-mrow(Typesetting:-mo(
Typesetting:-mrow(Typesetting:-mo(
Typesetting:-mrow(Typesetting:-mo(
Typesetting:-mrow(Typesetting:-mo(
Typesetting:-mrow(Typesetting:-mo(
Typesetting:-mrow(Typesetting:-mo(
Typesetting:-mrow(Typesetting:-mo(
Typesetting:-mrow(Typesetting:-mo(
 

A1 := display([pll || (0 .. 300)], insequence = true); -1 

A2 := display([plla || (0 .. 300)], insequence = true); -1 

A3 := display([plbob || (0 .. 300)], insequence = true); -1 

A4 := display([plcv || (0 .. 300)], insequence = true); -1 

Typesetting:-mrow(Typesetting:-mi( 

Example 2     Vertical motion 

 

YY := proc (t) options operator, arrow; .75*sin(3.03*t) end proc 

deq2 := (diff(theta(t), t, t))+((diff(YY(t), t, t))+9.81)*sin(theta(t)) = 0 

slnb := dsolve({theta(0) = .5, (D(theta))(0) = -.5, deq2}, theta(t), numeric) 

 

Plots of the position with respect to time and also of the phase plane for this example 

 

odeplot(slnb, [t, theta(t)], t = 0 .. 100, numpoints = 5000) 

odeplot(slnb, [theta(t), (D(theta))(t)], t = 0 .. 100, numpoints = 5000) 

 

animation of the motion of this pendulum. 

 

Typesetting:-mrow(Typesetting:-mo(
Typesetting:-mrow(Typesetting:-mo(
Typesetting:-mrow(Typesetting:-mo(
Typesetting:-mrow(Typesetting:-mo(
Typesetting:-mrow(Typesetting:-mo(
Typesetting:-mrow(Typesetting:-mo(
Typesetting:-mrow(Typesetting:-mo(
Typesetting:-mrow(Typesetting:-mo(
Typesetting:-mrow(Typesetting:-mo(
Typesetting:-mrow(Typesetting:-mo(
 

AY1 := display([pll || (0 .. 300)], insequence = true); -1 

AY2 := display([plla || (0 .. 300)], insequence = true); -1 

AY3 := display([plbob || (0 .. 300)], insequence = true); -1 

AY4 := display([plcv || (0 .. 300)], insequence = true); -1 

Typesetting:-mrow(Typesetting:-mi( 

 

Example 3    Circular motion 

 

XX := proc (t) options operator, arrow; cos(2*t) end proc 

YY := proc (t) options operator, arrow; sin(2*t) end proc 

 

deqc := (diff(theta(t), t, t))+(diff(XX(t), t, t))*cos(theta(t))+((diff(YY(t), t, t))+9.81)*sin(theta(t)) = 0
deqc := (diff(theta(t), t, t))+(diff(XX(t), t, t))*cos(theta(t))+((diff(YY(t), t, t))+9.81)*sin(theta(t)) = 0
 

slncirc := dsolve({theta(0) = .5, (D(theta))(0) = -.5, deqc}, theta(t), numeric) 

 

plots of the position with respect to time and of the phase plane  

 

odeplot(slncirc, [t, theta(t)], t = 0 .. 20, numpoints = 3000) 

odeplot(slncirc, [theta(t), (D(theta))(t)], t = 0 .. 100, numpoints = 3000) 

 

animation of the motion for this pendulum 

 

Typesetting:-mrow(Typesetting:-mo(
Typesetting:-mrow(Typesetting:-mo(
Typesetting:-mrow(Typesetting:-mo(
Typesetting:-mrow(Typesetting:-mo(
Typesetting:-mrow(Typesetting:-mo(
Typesetting:-mrow(Typesetting:-mo(
Typesetting:-mrow(Typesetting:-mo(
Typesetting:-mrow(Typesetting:-mo(
Typesetting:-mrow(Typesetting:-mo(
Typesetting:-mrow(Typesetting:-mo(
Typesetting:-mrow(Typesetting:-mo(
 

 

AC1 := display([pll || (0 .. 300)], insequence = true); -1 

AC2 := display([plla || (0 .. 300)], insequence = true); -1 

AC3 := display([plbob || (0 .. 300)], insequence = true); -1 

AC4 := display([plcv || (0 .. 300)], insequence = true); -1 

display([AC1, AC2, AC3, AC4]) 

 

A Procedure for drawing the pendulums  

 

The procedure  is called drad and has the following  imputs   

                                 L = length ,  

                             angl = inital displacement angle,  

                              vel = initial velocity 

                                 a =  the x component of the path for the pivot 

                                 b =  the y component of the pivot's path 

                                 n = the number of iterations used to draw the annimations  

 

 

examples   for horizontal motion try  a = Typesetting:-mrow(Typesetting:-mn( 

                for vertical motion   try    a = 0    and b = Typesetting:-mrow(Typesetting:-mn( 

                for circular motion   try    a = Typesetting:-mrow(Typesetting:-mi(and b = sin(3t - π/2) 

                 

                experiment with other paths  such as  a = sin(2.25t - π/2)  b = cos(2t + π/4)  etc  try varying the lenght and the initial conditions.  Have Fun with it!!! 

 

 

Typesetting:-mrow(Typesetting:-mi( 

 

 

Typesetting:-mrow(Typesetting:-mi(
Typesetting:-mrow(Typesetting:-mi(
Typesetting:-mrow(Typesetting:-mi(
Typesetting:-mrow(Typesetting:-mi(
Typesetting:-mrow(Typesetting:-mi(
Typesetting:-mrow(Typesetting:-mi(
Typesetting:-mrow(Typesetting:-mi(
Typesetting:-mrow(Typesetting:-mi(
Typesetting:-mrow(Typesetting:-mi(
Typesetting:-mrow(Typesetting:-mi(
Typesetting:-mrow(Typesetting:-mi(
Typesetting:-mrow(Typesetting:-mi(
Typesetting:-mrow(Typesetting:-mi(
Typesetting:-mrow(Typesetting:-mi(
Typesetting:-mrow(Typesetting:-mi(
Typesetting:-mrow(Typesetting:-mi(
Typesetting:-mrow(Typesetting:-mi(
Typesetting:-mrow(Typesetting:-mi(
Typesetting:-mrow(Typesetting:-mi(
Typesetting:-mrow(Typesetting:-mi(
Typesetting:-mrow(Typesetting:-mi(
Typesetting:-mrow(Typesetting:-mi(
Typesetting:-mrow(Typesetting:-mi(
Typesetting:-mrow(Typesetting:-mi(
Typesetting:-mrow(Typesetting:-mi(
Typesetting:-mrow(Typesetting:-mi(
 

 

 

Example 1.  pivot moving along a curve 

drad(2, 1, -.5, sin(2.25*t-1/2*Pi), cos(2*t+1/4*Pi), 400) 

Plot
 

 

Additional examples 

 

Example 1   horizontal motion of the pivot 

Typesetting:-mrow(Typesetting:-mi( 

 

Example 2 vertical motion of the pivot 

Typesetting:-mrow(Typesetting:-mi( 

 

Example 3 cicular motion of the pivot 

Typesetting:-mrow(Typesetting:-mi( 

 

Drawing the pendulums 

drad(2, .5, -.5, sin(3*t), sin(3*t-1/2*Pi), 400) 

Plot
 

 

 

plot([sin(3*t), sin(3*t-1/2*Pi), t = 0 .. 2]) 

Plot
 

 

 

Legal Notice: The copyright for this application is owned by the author(s). Neither Maplesoft nor the author are responsible for any errors contained within and are not liable for any damages resulting from the use of this material. This application is intended for non-commercial, non-profit use only. Contact the author for permission if you wish to use this application in for-profit activities.
 

Image