Application Center - Maplesoft

App Preview:

Dijkstras Shortest Path Algorithm

You can switch back to the summary page by clicking here.

Learn about Maple
Download Application


 

Image 

A Maple Package implementing
Dijkstra's Shortest Path Algorithm
 

Jay Pedersen
University of Nebraska at Omaha Student
E-mail:
jayped007@gmail.com 

Code Version 3, Date 2007-05-31, Maple Version 11

Project: Implement Dijkstras Algorithm for determining shortest paths in a network.

 

 

> restart;
with(networks):
 

References 

Dijkstra's Shortest Path algorithm is a well-known algorithm.  One place where it is 

defined is in  'Network Flows' by Ravindra Ahuga, Thomas Magnanti, and James Orlin, 

(c) 1993, ISBN 0-13-617549-X. 

 

Storage of a network is done into a 'Forward Star' and 'Reverse Star' data structure. 

These structures are also defined in 'Network Flows' in section 2.3 (Network 

Representations). 

 

Maple programming is described in "maple 9; Introductory Programming Guide" 

from Maplesoft; ISBN 189451143-3.  Available from the maplesoft website. 

 

Input Format (for Network definition) 

The algorithm takes as input a string containing a network definition.

The assumption is made that nodes are numberd 1:N, where N is the number
 

of nodes. 

 

A network definition is a list containing sublists with numeric sequences; which
define the network.
 

 

1. The first sublist contains the number of nodes in the network,
   the number of arcs and the source node.
 

 

   For example: [4, 7, 5] defines a network with 4 nodes and 7 arcs
   and says that node 5 is the source node to find shortest paths from.
 

 

2. The remaining sublists define the arcs in the network.  Each 

   specifies the start node, end node and cost of traveling the arc. 

 

   For example: '2 5 15' defines an arc from 2 to 5 with cost 15. 

 

Example network definion (4 nodes, 6 arcs, source node is 1): 


net := [
 

[4, 6, 1], 

[1, 2, 1], 

[1, 3, 3], 

[2, 3, 2], 

[3, 2, 4], 

[2, 4, 5], 

[3, 4, 9] 

]; 

Algorithm Code 

 

> Dijkstras_Shortest_Path := module()

# Note: global variables started with uppercase, eg: ArcCount
# Note: 'for i to n' means 'for i from 1 to n'

 option package;

 export Dijkstras_Algorithm;

 local loadNetwork, ShowArcs; # internal support routines

 Dijkstras_Algorithm := proc (network_def::list)

   local s :: set, dist, pred, i :: integer, j :: integer, in_S :: integer,
         arc_num :: integer, testval :: integer, found_one :: boolean,
         result :: boolean, sink :: integer, make_graph :: boolean;

   global NodeCount, ArcCount, FS_tail, FS_head, FS_cost,
          FS_point, FS_rpoint, FS_trace, G;

   # determine if 2nd argument passed and set true => generate graph
   make_graph := evalb(nargs = 2 and type(args[2],boolean) and args[2]);

   # process network definition, load Forward-Star
   result := loadNetwork(network_def);
   if (not result) then
       return false;
   end if;

   # create and init arrays
   pred := array(1..NodeCount, [seq(0,i=1..NodeCount)]);        # predecessor of each node
   dist := array(1..NodeCount, [seq(infinity,i=1..NodeCount)]); # dist to of each node

   # process network, find shortest path from source to destintions
   i := SourceNode; dist[i] := 0; pred[i] := 0; in_S := 0; s := { };
   while (in_S < NodeCount) do

       # find minimum distance node, not in s
       found_one := false;
       for j to NodeCount do;
           if ((dist[j] <> infinity) and (not (j in s))) then
               if (not found_one) then
                   found_one := true;
                   i := j;
                   testval := dist[j];
               elif (dist[j] < testval) then
                   i := j;
                   testval := dist[j];
               end if;
           end if;
       end;

       # sanity check
       if (not found_one) then
           printf("Aborting Dijkstras Algorithm, next node not determined.\n");
           printf("Possible network definition issue, not fully connected?\n");
           return false;
       end if;

       # add next item to list
       s := s union { i };
       in_S := in_S + 1;
       sink := i;

       # process all arcs emanating from i
       for arc_num from FS_point[i] to
                       (FS_point[i+1] - 1) do;
           j := FS_head[arc_num];
           if (not (j in s)) then
               testval := dist[i] + FS_cost[arc_num];
               if (testval < dist[j]) then
                   dist[j] := testval;
                   pred[j] := i;
               end if;
           end if;
       end;

   end; # while (in_S < NodeCount)

   # At this point, shortest paths for graph is determined.

   printf("\nshortest paths from source (from node %d):\n\n", SourceNode);
   printf("  To Node   Dist   Prev Node\n");
   for i to NodeCount do;
       if (i <> SourceNode) then
           printf ("   %6d %6d %6d\n", i, dist[i], pred[i]);
       end if;
   end;
   printf("\n");

   # create graph G if requested
   if (make_graph) then
       new(G):
       addvertex(seq(i,i=1..NodeCount),G);
       for i to NodeCount do;
           if (i <> SourceNode) then
               j := pred[i];
               connect({i},{j},G);
           end if;
       end;
       return(draw(G));
   end if;

   return true;

 end proc: # Dijkstras_Algorithm

# Routine: LoadNetwork
# Abstract: Reads network definition from string and loads
# into Forward Start data structure.
# Arguments: s - string containing network definition
# Output: NodeCount, ArcCount, SourceNode, SinkNode,
# FS_tail, FS_head, FS_cost
# FS_point, FS_rpoint, FS_trace
# Returns: boolean, true if valid network found and loaded
#
# File syntax: (1) comment Lines - lines beginning with '#'
# 1st Data Line -
# node count, arc count, source node
# 2nd : nth Data Lines (arc definitions)
# from node #, to node #, arc cost

 loadNetwork := proc (Network_def::list)

   local n, s, src, all_done, result, first_seq,
 seq_data, arc_number,
         raw_tail, raw_head, raw_cost,
         node_num, arc_num;

   global NodeCount, ArcCount, SourceNode,
          FS_point, FS_tail, FS_head, FS_cost,
          FS_trace, FS_rpoint;

   # initialize
   n := nops(Network_def);
   if (n < 1) then
       printf("Empty network\n");
       return false;
   end if;

   result      := true;
   all_done    := false;
   first_seq   := true;
   arc_number  := 0;

   while (not all_done) do;
       # read next sequence
       if (first_seq) then
           seq_data := Network_def[1];
           if (nops(seq_data) <> 3) then
               all_done := true;
           elif ((seq_data[1] < 1) or (seq_data[2] < 1) or
                     (seq_data[3] < 1) or (seq_data[3] > seq_data[1])) then
               all_done := true;
           end if;
           if (all_done) then
               result := false;
               printf("Invalid data: %s\n", src);
               printf("Possibly invalid NodeCount, ArcCount, SourceNode\n");
           else
               NodeCount      := seq_data[1];
               ArcCount       := seq_data[2];
SourceNode     := seq_data[3];
               raw_tail       := array(1..ArcCount);
               raw_head       := array(1..ArcCount);
               raw_cost       := array(1..ArcCount);
               FS_point       := array(1..NodeCount+1);
               FS_tail        := array(1..ArcCount);
               FS_head        := array(1..ArcCount);
               FS_cost        := array(1..ArcCount);
               FS_trace       := array(1..ArcCount);
               FS_rpoint      := array(1..NodeCount+1);
               first_seq := false;
           end if;
       else # not first_seq, arc definition: from node, to node, cost
           if ((arc_number + 2) > n) then
               all_done := true; # EOF, out of arc definitions
               break;
           end if;
           arc_number := arc_number + 1;
           if (arc_number > ArcCount) then
               printf("Invalid data: too many arc definitions, %d > %d\n",
                      arc_number, ArcCount);
               all_done := true;
               result := false;
           else
               seq_data := Network_def[arc_number+1]; # add 1 because 1st is node count
               if (nops(seq_data) <> 3) then
                   all_done := true;
               elif ((seq_data[1] < 1) or (seq_data[1] > NodeCount) or
                           (seq_data[2] < 1) or (seq_data[2] > NodeCount) or
                           (seq_data[3] < 0)) then
                   all_done := true;
               end if;
               if (all_done) then
                   result := false;
                   printf("Invalid arc definition: %s\n", s);
                   printf("Possibly invalid node number or cost\n");
               else
                   raw_tail[arc_number] := seq_data[1];
                   raw_head[arc_number] := seq_data[2];
                   raw_cost[arc_number] := seq_data[3];
               end if;
           end if;
end if;
   end;

   # validation of data
   if (result = true) then
       if (arc_number <> ArcCount) then
           printf("Invalid data: wrong number of arc definions, %d <> %d\n",
                  arc_number, ArcCount);
           result := FALSE;
       end if;
   end if;

   # Load into forward-star data structure
   if (result = true) then
       # forward-direction, arcs emanating from node i
       arc_number := 0;
       for node_num to NodeCount do;
           FS_point[node_num] := arc_number + 1;
           for arc_num to ArcCount do;
               if (raw_tail[arc_num] = node_num) then
                   arc_number := arc_number + 1;
                   FS_tail[arc_number] := raw_tail[arc_num];
                   FS_head[arc_number] := raw_head[arc_num];
                   FS_cost[arc_number] := raw_cost[arc_num];
               end if;
           end;
       end;
       FS_point[NodeCount+1] := ArcCount + 1;
       # reverse-direction, arcs coming into node i
       arc_number := 0;
       for node_num to NodeCount do;
           FS_rpoint[node_num] := arc_number + 1;
           for arc_num to ArcCount do;
               if (FS_head[arc_num] = node_num) then
                   arc_number := arc_number + 1;
                   FS_trace[arc_number] := arc_num;
               end if;
           end;
       end;
       FS_rpoint[NodeCount+1] := ArcCount + 1;
   end if;

   # all done
   return result;

 end proc: # loadNetwork

# Routine: ShowArcs (internal debugging routine)
# Abstract: Display Arcs in network,
#               traverses forward-star structure
# Arguments: none
# Input: Forward-Star network defintion, vbls FS_x
# Output: Display to screen

 ShowArcs := proc()

   local node_num, arc_num;

   global NodeCount, ArcCount,
          FS_point, FS_tail, FS_head,
          FS_trace, FS_rpoint;

   printf("Forward arcs:\n\n");
   for node_num to NodeCount do;
       printf ("From %d:\n", node_num);
       for arc_num from FS_point[node_num] to
                       (FS_point[node_num+1] - 1) do;
           printf("%d. %d - %d\n",
                  arc_num, FS_tail[arc_num],
                  FS_head[arc_num]);
       end;
   end;

   printf("\nBackward arcs:\n\n");
   for node_num to NodeCount do;
       printf("To %d:\n", node_num);
       for arc_num from FS_rpoint[node_num] to
                       (FS_rpoint[node_num+1]-1) do;
           printf("%d. %d - %d\n",
              arc_num, FS_tail[FS_trace[arc_num]],
              FS_head[FS_trace[arc_num]]);
       end;
   end;

   # all done
   return true;

 end proc: # ShowArcs

end module: # Dijkstras_Shortest_Path

with(Dijkstras_Shortest_Path);
 

[Dijkstras_Algorithm]
 

Example Usage 

Usage: The routine Dijkstras_Algorithm is invoked to determine the shortest 

paths from the source node to destination nodes on the network that it is given. 


Syntax: Dijkstras_Algorithm(network[, display_graph]);

Arguments:
Network - list defining the network (see "Input Format" section).
display_graph - true/false, if true => graphically display shortest paths
                                           defaults to false if not specified (=> no graph if not specified)
 

> net := [
[4, 6, 1], # 4 nodes, 6 arcs, source node: 1
[1, 2, 1], # arc 1 - from 1 to 2, cost=1
[1, 3, 3],[2, 3, 2],[3, 2, 4],[2, 4, 5],[3, 4, 9]
]:
Dijkstras_Algorithm(net); # dont display graph
 

 


shortest paths from source (from node 1):

 To Node   Dist   Prev Node
       2      1      1
       3      3      1
       4      6      2
true
 

> # More complex network, show resulting graph

net := [
[9,36,1], # 9 nodes, 36 arcs, source node 1
[1,2,5],  # arc from 1 to 2, cost 5
[1,3,9],[1,4,20],[1,5,4],[1,8,14],[1,9,15],
[2,1,5],[2,3,6],[3,1,9],[3,2,6],[3,4,15],
[3,5,10],[4,1,20],[4,3,15],[4,5,20],[4,6,7],
[4,7,12],[5,1,4],[5,3,10],[5,4,20],[5,6,3],
[5,7,5],[5,8,13],[5,9,6],[6,4,7],[6,5,3],
[7,4,12],[7,5,5],[7,8,7],[8,1,14],[8,5,13],
[8,7,7],[8,9,5],[9,1,15],[9,5,6],[9,8,5]
]:

Dijkstras_Algorithm(net, true);
 

 


shortest paths from source (from node 1):

 To Node   Dist   Prev Node
       2      5      1
       3      9      1
       4     14      6
       5      4      1
       6      7      5
       7      9      5
       8     14      1
       9     10      5
Plot_2d
 

 

Legal Notice: The copyright for this application is owned by the author(s). Neither Maplesoft nor the author are responsible for any errors contained within and are not liable for any damages resulting from the use of this material. This application is intended for non-commercial, non-profit use only. Contact the author for permission if you wish to use this application in for-profit activities.
 

Image