The Relaxation function problem of an orthotropic cylinder
Co. H. Tran.
Faculty of Mathematics, University of Natural Sciences - VNU-HCM
coth123@math.com & cohtran@math.com
Copyright 2007
June 06 2007
NOTE:
This worksheet demonstrates Maple's capabilities in researching the numerical and graphical solution of the relaxation function problem of an orthotropic cylinder .
All rights reserved. Copying or transmitting of this material without the permission of the authors is not allowed .
Abstract
The worksheet presents some thoughts about the plane strain problem of the viscous orthotropic composite materials cylinder under internal and external pressure with
respect to using the direct method . To compute the interior stress , from the elastic solution we use the correspondence principle and the inverse Laplace transform .
1. Analysis of the composite orthotropic cylinder :
We examine an orthotropic viscoelastic composite material cylinder which has the horizontal section within limit of 2 circles : r = a , r = b ( a < b ) .
Choosing the cylindrical coordinates r , , z ( the axial z is along with the cylinder ) . The components of stress and deformation
are functions of r , t respectively . The two components of deformation-tensor :
and the differential equation of equilibrium :
The boundary conditions :
2. Direct method :
The direct method is an approximate inversion technic based on the direct relation between the time dependence and the transformed solution . If the plot of the viscoelastic solution has small curvature when plotted with variables logt then :
(1)
where
C is Euler's constant ..
(1) is exact if
,
is proportional to logt .
(1) can be rewritten :
(2)
Note that (2) is used when
,
has small curvature with respect to logt .
From the correspondence principle we obtain the viscoelastic solution .
(3)
(4)
(5)
(6)
The operator moduli :
(7)
We consider the relaxation test , in which
,
is a constant at t = 0 (8) . We have
,
,
(9)
By the similar way , we find out :
(10)
Assume that the relaxation moduli have power form :
(11)
where
are constants .
By applying the Laplace transfom for (11) , we obtain the operator moduli :
(12)
with the values of Gamma function :
;
(13)
3. Parameters - The Numerical and Graphical Solution :
> |
restart;
cycrstrecom:=proc(T,Gamma1,c1,P1,Q1,M1,d1)
global P,Q,sigmaat1,sigmaat2,sigmabt2,sigmabt1,sigmaatisotropic,sigmabtisotropic ;
local To,E,E1,M,d,j,Gamma,Gamma_form,gamma;
with(inttrans):with(plottools):with(plots):
print(" PARAMETERS DEFINITION : ");
print( T=To,gamma=Gamma1,c=c1);
print(" REPRESENTATION OF STRESS : ");
sigma[theta](at):=(gamma*P*(1+c^(2*gamma))-gamma*Q*2*c^(gamma-1))/(1-c^(2*gamma));
print(sigma[theta](a)=sigma[theta](at));
sigma[theta](bt):=(gamma*P*2*c^(gamma+1)-Q*(1+c^(2*gamma)))/(1-c^(2*gamma));
print(sigma[theta](b)=sigma[theta](bt));
P:=P1;Q:=Q1;
To:=T;E[rt]:=(100*(t/To)^(-0.5)+1)*E[e];E[thetat]:=(100*(t/To)^(-0.1)+1)*E[e];
print(E[r]=E[rt]);
print(E[theta]=E[thetat]);
print(" LAPLACE TRANSFORM OF MODULI : ");
E1[rp]:=p*evalf(laplace(E[rt],t,p),3);
print(E1[r]=E1[rp]);
E1[thetap]:=p*evalf(laplace(E[thetat],t,p),3);
print(E1[theta]=E1[thetap]);
Gamma_form:=sqrt(E1[theta]/E1[r]);
print(" EXPRESSION OF : ",gamma=Gamma_form);
Gamma:=evalf(sqrt(E1[thetap]/E1[rp]),5):
Gamma:=simplify(Gamma);
print(gamma=Gamma);
sigma[theta](a):=(Gamma*P1*(1+c1^(2*Gamma))-Gamma*Q1*2*c1^(Gamma-1))/(1-c1^(2*Gamma));
sigma[theta](b):=(Gamma*P1*2*c1^(Gamma+1)-Q1*(1+c1^(2*Gamma)))/(1-c1^(2*Gamma));
print(sigma[Theta](a)=sigma[theta](a));;print(sigma[Theta](b)=sigma[theta](b));
sigma[theta](at):=(gamma*P*(1+c^(2*gamma))-gamma*Q*2*c^(gamma-1))/(1-c^(2*gamma));
print(" SUBSTITUTE ",c=c1 ,p =1/(2*t),gamma=Gamma);
sigmaat1:=evalf(subs(c=(1/2),p=(1/(2*t)),gamma=Gamma,P=P1,Q=Q1,sigma[theta](a)),3);
sigmaat1:=evalf(simplify(sigmaat1),2);
print(sigma[Theta](a)=sigmaat1);
sigmaat2:=subs(t=10^(s)*To,sigmaat1):
sigmaat2:=evalf(simplify(sigmaat2),2)/P1;
sigmabt1:=evalf(subs(c=(1/2),p=(1/(2*t)),gamma=Gamma,P=P1,Q=Q1,sigma[theta](b)),3);
sigmabt1:=evalf(simplify(sigmabt1),2);
print(sigma[Theta](b)=sigmabt1);
sigmabt2:=subs(t=10^(s)*To,sigmabt1):
sigmabt2:=evalf(simplify(sigmabt2),2);
print(" CHANGE THE PRESENTATION OF TIME INTO LOG(t/To) ");
print(sigma[Theta](a)=sigmaat2);
print(sigma[Theta](b)=sigmabt2);
sigmaatisotropic:=subs(s=0,sigmaat2);
sigmaatisotropic:=evalf(simplify(sigmaatisotropic),2);
print(sigmaa_isotropic=sigmaatisotropic);
sigmabtisotropic:=subs(s=0,sigmabt2):
sigmabtisotropic:=evalf(simplify(sigmabtisotropic),2);
print(" OUTPUT DATA ");
M:=M1;
d:=d1;
printf(" s=log(t/To) sigma[Theta](a)(s)/P \n\n");
for j from 0 to M do
printf("%10.1f %10.4f \n", -d*(10-j), subs(s=-d*(10-j),sigmaat2));
end do;
for j from 1 to M do
printf("%10.1f %10.4f \n", d*j, subs(s=d*j,sigmaat2));
end do;
print(" NUMERICAL AND GRAPHICAL SOLUTION ");
printf("\n%s"," KET THUC BAI TOAN ONG TRU COMPOSITE DAN NHOT TRUC HUONG BANG PHUONG PHAP TRUC TIEP ");
plot([sigmaat2,sigmaat2,sigmaatisotropic],s=-10..30,y=0.85..5.2,color=[grey,black,black],style=[line,point,point],thickness=1,symbol=[cross,diamond,cross],linestyle=1,axes=boxed,labels=["logt/To","sigma(a,t)/P"],legend=[`sigma(a,t)/P`,`sigma(a,t)/P`,`Isotropic solution`],title="Numerical solution");
end: |
> |
cycrstrecom(1, .83, 1/2, 1, 0, 30, 1); |
s=log(t/To) sigma[Theta](a)(s)/P
-10.0 1.4286
-9.0 1.4286
-8.0 1.4287
-7.0 1.4289
-6.0 1.4294
-5.0 1.4305
-4.0 1.4335
-3.0 1.4409
-2.0 1.4595
-1.0 1.5056
0.0 1.6182
1.0 1.8804
2.0 2.4264
3.0 3.3300
4.0 4.3240
5.0 4.8725
6.0 4.8419
7.0 4.5127
8.0 4.1110
9.0 3.7260
10.0 3.3828
11.0 3.0857
12.0 2.8323
13.0 2.6184
14.0 2.4396
15.0 2.2913
16.0 2.1691
17.0 2.0691
18.0 1.9877
19.0 1.9217
20.0 1.8684
1.0 1.8804
2.0 2.4264
3.0 3.3300
4.0 4.3240
5.0 4.8725
6.0 4.8419
7.0 4.5127
8.0 4.1110
9.0 3.7260
10.0 3.3828
11.0 3.0857
12.0 2.8323
13.0 2.6184
14.0 2.4396
15.0 2.2913
16.0 2.1691
17.0 2.0691
18.0 1.9877
19.0 1.9217
20.0 1.8684
21.0 1.8255
22.0 1.7910
23.0 1.7634
24.0 1.7413
25.0 1.7237
26.0 1.7096
27.0 1.6984
28.0 1.6894
29.0 1.6823
30.0 1.6766
KET THUC BAI TOAN ONG TRU COMPOSITE DAN NHOT TRUC HUONG BANG PHUONG PHAP TRUC TIEP
REFERENCES
[1] Ngo Thanh Phong , Nguyen Thoi Trung , Nguyen D?nh Hien , Ap dung
phap gan dung bien doi Laplace nguoc de giai bai toan bien dang phang trong
lieu composite dan nhot truc huong , Tap ch? phat trien KHCN , tap 7 , so 4 &
in Vietnamese ) , 2002 .
[2] R.A. Schapery , Stress Analysis of Viscoelastic Composite Materials ,
Edited by G.P.Sendeckyj ,Academic Press , Newyork ?London , 1971 .
Legal Notice: The copyright for this application is owned by the author(s). Neither Maplesoft nor the author are responsible for any errors contained within and are not liable for any damages resulting from the use of this material. This application is intended for non-commercial, non-profit use only. Contact the author for permission if you wish to use this application in for-profit activities.