Application Center - Maplesoft

App Preview:

Konforme Abbildung, Ausweichströmung um eine Ellipse

You can switch back to the summary page by clicking here.

Learn about Maple
Download Application


 

Image 

Konforme Abbildung, Ausweichstr?mung um eine Ellipse 

Univ.-Prof. Dr.-Ing. habil. J. BETTEN,
RWTH Aachen, Tensorrechnung II
 

> restart:
 

> F:=z->exp(I*gamma)*(z+sqrt(z^2-a^2+b^2))/2+(a+b)^2/2/(exp(I*gamma)*(z+sqrt(z^2-a^2+b^2)));
 

proc (z) options operator, arrow; `+`(`*`(`/`(1, 2), `*`(exp(`*`(I, `*`(gamma))), `*`(`+`(z, sqrt(`+`(`*`(`^`(z, 2)), `-`(`*`(`^`(a, 2))), `*`(`^`(b, 2)))))))), `/`(`*`(`/`(1, 2), `*`(`^`(`+`(a, b), 2...
 

> phi[a](x,y):=simplify(evalc(Re(F(x+I*y)))): # reelles Potential
 

> eq:=evalf(subs({a=3,b=2,gamma=Pi/12},%)):
 

> psi[a](x,y):=simplify(evalc(Im(F(x+I*y)))):  # Stromfunktion
 

> EQ:=evalf(subs({a=3,b=2,gamma=Pi/12},%)):
 

> EQ_:=subs(x=-X,%):
 

> Ellipse[a]:=(x/a)^2+(y/b)^2;
 

`:=`(Ellipse[a], `+`(`/`(`*`(`^`(x, 2)), `*`(`^`(a, 2))), `/`(`*`(`^`(y, 2)), `*`(`^`(b, 2)))))
 

> Ellipse:=subs({a=3,b=2},%);
 

`:=`(Ellipse, `+`(`/`(`*`(`^`(x, 2)), `*`(9)), `/`(`*`(`^`(y, 2)), `*`(4))))
 

> a:=3;  b:=2;  # Halbachsen der Ellipse als Beispiel
 

`:=`(a, 3)
 

`:=`(b, 2)
 

> Verh?ltnis_der_Halbachsen:=a/b;
 

`:=`(Verh?ltnis_der_Halbachsen, `/`(3, 2))
 

> with(plots,implicitplot,conformal):
 

> alias(H=Heaviside,th=thickness):
 

> plot1:=implicitplot({EQ=-2,EQ=-1,EQ=-1/2,EQ=0,EQ=1/2,EQ=1, EQ=2}, x=0.001....8,y=-4..4,numpoints=5000,scaling=constrained,th=2,color=black):
 

> plot2:=implicitplot({EQ_=-2,EQ_=-1,EQ_=-1/2,EQ_=0,EQ_=1/2,EQ_=1,EQ_=2}, X=-8..-0.001,y=-4..4,numpoints=5000,scaling=constrained,th=2,color=black):
 

> plot3:=plot({-4,4,-4*H(x+8),4*H(x+8),-4*H(x-8),4*H(x-8)}, x=-8.001..8.001,y=-4..4,color=black,                          title="Ausweichstr?mung um eine Ellipse (a=3,b=2), gamma Pi/12"):
 

> plots[display]({plot1,plot2,plot3});
 

Plot_2d
 

 

 

Die Staupunkte ermittelt man  wegen  f '(z) = v[x] - i*v[y]  aus f '(z) = 0. Da aber  f '(z) nicht sein 

darf wegen Gleichung (12.25) aus Tensorrechnung-Buch (Seite 230), bezeichne ich Staupunkte als 

"kritische Punkte", nicht jedoch als "Singularit?ten". Beispielsweise sind Senken und Quellen singul?re 

Punkte. 

> restart:                              
 

> f(z):=exp(I*gamma)*(z+sqrt(z^2-a^2+b^2))/2+ (a+b)^2/(2*exp(I*gamma)*(z+sqrt(z^2-a^2+b^2)));
 

`:=`(f(z), `+`(`*`(`/`(1, 2), `*`(`*`(exp(`*`(gamma, `*`(I))), `*`(`+`(z, `*`(`^`(`+`(`*`(`^`(z, 2)), `-`(`*`(`^`(a, 2))), `*`(`^`(b, 2))), `/`(1, 2)))))))), `*`(`/`(1, 2), `*`(`/`(`*`(`^`(`+`(a, b), ... (1)
 

> Diff(f,z)=diff(f(z),z);  # komplexe Ableitung
 

Diff(f, z) = `+`(`*`(`/`(1, 2), `*`(`*`(exp(`*`(gamma, `*`(I))), `*`(`+`(1, `/`(`*`(z), `*`(`^`(`+`(`*`(`^`(z, 2)), `-`(`*`(`^`(a, 2))), `*`(`^`(b, 2))), `/`(1, 2))))))))), `-`(`*`(`/`(1, 2), `*`(`/`(...
 

> Staupunktlage:=solve(diff(f(z),z)=0,z);
 

`:=`(Staupunktlage, `+`(`*`(`/`(1, 2), `*`(`*`(`+`(b, a, `-`(`*`(exp(`*`(`*`(2, `*`(I)), `*`(gamma))), `*`(b))), `*`(exp(`*`(`*`(2, `*`(I)), `*`(gamma))), `*`(a))), `*`(exp(`+`(`-`(`*`(`+`(I), `*`(gam...
 

> S[1]:=-expand(%);
 

`:=`(S[1], `+`(`-`(`/`(`*`(b), `*`(2, `*`(`^`(-1, `/`(`*`(gamma), `*`(Pi))))))), `-`(`/`(`*`(a), `*`(2, `*`(`^`(-1, `/`(`*`(gamma), `*`(Pi))))))), `/`(`*`(`^`(-1, `/`(`*`(gamma), `*`(Pi))), `*`(b)), `...
 

 

> S[2]:=expand(%%);
 

`:=`(S[2], `+`(`/`(`*`(b), `*`(2, `*`(`^`(-1, `/`(`*`(gamma), `*`(Pi)))))), `/`(`*`(a), `*`(2, `*`(`^`(-1, `/`(`*`(gamma), `*`(Pi)))))), `-`(`/`(`*`(`^`(-1, `/`(`*`(gamma), `*`(Pi))), `*`(b)), `*`(2))...
 

> X[1]:=simplify(evalc(Re(S[1])));
 

`:=`(X[1], `+`(`-`(`*`(cos(gamma), `*`(a)))))
 

> Y[1]:=simplify(evalc(Im(S[1])));
 

`:=`(Y[1], `*`(sin(gamma), `*`(b)))
 

> X[2]:=simplify(evalc(Re(S[2])));
 

`:=`(X[2], `*`(cos(gamma), `*`(a)))
 

> Y[2]:=simplify(evalc(Im(S[2])));
 

`:=`(Y[2], `+`(`-`(`*`(sin(gamma), `*`(b)))))
 

> Ellipse:=(x/a)^2+(y/b)^2-1;
 

`:=`(Ellipse, `+`(`/`(`*`(`^`(x, 2)), `*`(`^`(a, 2))), `/`(`*`(`^`(y, 2)), `*`(`^`(b, 2))), `-`(1)))
 

> ELLIPSE[1]:=subs({x=X[1],y=Y[1]},%);
 

`:=`(ELLIPSE[1], `+`(`*`(`^`(cos(gamma), 2)), `*`(`^`(sin(gamma), 2)), `-`(1)))
 

> ELLIPSE[2]:=subs({x=X[2],y=Y[2]},%%);
 

`:=`(ELLIPSE[2], `+`(`*`(`^`(cos(gamma), 2)), `*`(`^`(sin(gamma), 2)), `-`(1)))
 

Die Staupunkte liegen auf der Ellipse. 

 

Legal Notice: The copyright for this application is owned by the author(s). Neither Maplesoft nor the author are responsible for any errors contained within and are not liable for any damages resulting from the use of this material. This application is intended for non-commercial, non-profit use only. Contact the author for permission if you wish to use this application in for-profit activities.
 

Image