Application Center - Maplesoft

App Preview:

Hyperbolic Functions -1

You can switch back to the summary page by clicking here.

Learn about Maple
Download Application


 

Image 

Hyperbolic Functions 1 

? Maplesoft, a division of Waterloo Maple Inc., 2007 

Introduction 

This application is one of a collection of examples teaching Calculus with Maple. These applications use Clickable Calculus? methods to solve problems interactively. Steps are given at every stage of the solution, and many are illustrated using short video clips.  Click on theImage buttons to watch the videos. 

The steps in the document can be repeated to solve similar problems. 

 

Problem Statement 

Verify the identity Typesetting:-mrow(Typesetting:-msup(Typesetting:-mi(. 

Solution 

There are three possible methods of verifying this identity: from first principles, using Maple operators and using the test relation option in the Context Menu. 

 

Step 

Result 

Enter Typesetting:-mrow(Typesetting:-mi( and convert it to exponential form. 

 

Enter Typesetting:-mrow(Typesetting:-mi( and press [Enter]. Right-click, Conversions>Exponential. 

 

HyperlinkImage 

Typesetting:-mrow(Typesetting:-mi( 

cosh(x) (3.1)
 

Typesetting:-mover(Typesetting:-mo( 

`+`(`*`(`/`(1, 2), `*`(exp(x))), `*`(`/`(1, 2), `*`(exp(`+`(`-`(x)))))) (3.2)
 

 

Square the exponential form of Typesetting:-mrow(Typesetting:-mi(. 

Use the equation label to enter the appropriate expression ([Ctrl]+L, enter the equation number, [Enter]). Right-click, Expand. 

 

HyperlinkImage 

Typesetting:-mrow(Typesetting:-mi( 

`*`(`^`(`+`(`*`(`/`(1, 2), `*`(exp(x))), `*`(`/`(1, 2), `*`(exp(`+`(`-`(x)))))), 2)) (3.3)
 

 

Typesetting:-mover(Typesetting:-mo( 

`+`(`*`(`/`(1, 4), `*`(`^`(exp(x), 2))), `/`(1, 2), `/`(`*`(`/`(1, 4)), `*`(`^`(exp(x), 2)))) (3.4)
 

 

Enter Typesetting:-mrow(Typesetting:-mi( and convert it to exponential form. 

 

Enter Typesetting:-mrow(Typesetting:-mi( and press [Enter]. Right-click, Conversions>Exponential. 

 

HyperlinkImage 

 

Typesetting:-mrow(Typesetting:-mi( 

sinh(x) (3.5)
 

Typesetting:-mover(Typesetting:-mo( 

`+`(`*`(`/`(1, 2), `*`(exp(x))), `-`(`*`(`/`(1, 2), `*`(exp(`+`(`-`(x))))))) (3.6)
 

 

Square the exponential form of Typesetting:-mrow(Typesetting:-mi(. 

Use the equation label to enter the appropriate expression ([Ctrl]+L, enter the equation number, [Enter]). Right-click, Expand. 

 

HyperlinkImage 

 

Typesetting:-mrow(Typesetting:-mi( 

`*`(`^`(`+`(`*`(`/`(1, 2), `*`(exp(x))), `-`(`*`(`/`(1, 2), `*`(exp(`+`(`-`(x))))))), 2)) (3.7)
 

Typesetting:-mover(Typesetting:-mo( 

`+`(`*`(`/`(1, 4), `*`(`^`(exp(x), 2))), `-`(`/`(1, 2)), `/`(`*`(`/`(1, 4)), `*`(`^`(exp(x), 2)))) (3.8)
 

 

Construct the left-hand side of the identity and verify that this is the same as the right-hand side. 

 

Use the equation labels to enter the expression. Press [Enter] to evaluate. 

 

HyperlinkImage 

 

Typesetting:-mrow(Typesetting:-mi( 

1 (3.9)
 

 

 

Additional Methods 

 

Enter the expression for the left-hand side of the identity in the form Typesetting:-mrow(Typesetting:-msup(Typesetting:-mi(. 

 

Use the equation labels for Typesetting:-mrow(Typesetting:-mi( and Typesetting:-mrow(Typesetting:-mi( to enter the expression. 

 

Right-click: Combine>Trig. 

 

HyperlinkImage 

 

Typesetting:-mrow(Typesetting:-msup(Typesetting:-maction(Typesetting:-mverbatim( 

`+`(`*`(`^`(cosh(x), 2)), `-`(`*`(`^`(sinh(x), 2)))) (3.10)
 

Typesetting:-mrow(Typesetting:-mi( 

1 (3.11)
 

 

Enter the expression for the identity. 

 

Use the equation labels for Typesetting:-mrow(Typesetting:-mi( and Typesetting:-mrow(Typesetting:-mi( to construct the identity. Press [Enter]. 

 

Right-click: Test Relation. 

 

HyperlinkImage 

Typesetting:-mrow(Typesetting:-mi( 

`+`(`*`(`^`(cosh(x), 2)), `-`(`*`(`^`(sinh(x), 2)))) = 1 (3.12)
 

Typesetting:-mrow(Typesetting:-mi( 

true (3.13)
 

 

 

Legal Notice: The copyright for this application is owned by Maplesoft. The application is intended to demonstrate the use of Maple to solve a particular problem. It has been made available for product evaluation purposes only and may not be used in any other context without the express permission of Maplesoft.   

Image