Application Center - Maplesoft

App Preview:

Hyperbolic Functions -2

You can switch back to the summary page by clicking here.

Learn about Maple
Download Application


 

Image 

Hyperbolic Functions 2 

? Maplesoft, a division of Waterloo Maple Inc., 2007 

Introduction 

This application is one of a collection of examples teaching Calculus with Maple. These applications use Clickable Calculus? methods to solve problems interactively. Steps are given at every stage of the solution, and many are illustrated using short video clips.  Click on theImage buttons to watch the videos. 

The steps in the document can be repeated to solve similar problems. 

 

Problem Statement 

Obtain the logarithmic form of Typesetting:-mrow(Typesetting:-mi(, the functional inverse of Typesetting:-mrow(Typesetting:-mi(. 

Solution 

Step 

Result 

Enter Typesetting:-mrow(Typesetting:-mi( and convert it to exponential form. 

 

Enter Typesetting:-mrow(Typesetting:-mi( and press [Enter]. Right-click, Conversions>Exponential. 

 

HyperlinkImage 

Typesetting:-mrow(Typesetting:-mi( 

sinh(z) (3.1)
 

Typesetting:-mover(Typesetting:-mo( 

`+`(`*`(`/`(1, 2), `*`(exp(z))), `-`(`*`(`/`(1, 2), `*`(exp(`+`(`-`(z))))))) (3.2)
 

 

Let Typesetting:-mrow(Typesetting:-mi( represent the exponential form of Typesetting:-mrow(Typesetting:-mi(. 

 

Use the equation label for the exponential expression of Typesetting:-mrow(Typesetting:-mi( ([Ctrl]+L, type the equation number and press [Enter]. 

 

HyperlinkImage 

 

Typesetting:-mrow(Typesetting:-mi( 

w = `+`(`*`(`/`(1, 2), `*`(exp(z))), `-`(`*`(`/`(1, 2), `*`(exp(`+`(`-`(z))))))) (3.3)
 

 

Solve for Typesetting:-mrow(Typesetting:-msup(Typesetting:-mi( 

 

Copy the equation above (use [Ctrl]-drag) to a new document block. Let Typesetting:-mrow(Typesetting:-mi( and edit the equation appropriately. Press [Enter]. Right-click, Solve>Obtain solutions for>u. 

 

HyperlinkImage 

 

Typesetting:-mrow(Typesetting:-mi( 

w = `+`(`*`(`/`(1, 2), `*`(u)), `-`(`/`(`*`(`/`(1, 2)), `*`(u)))) (3.4)
 

Typesetting:-mover(Typesetting:-mo(`+`(w, `*`(`^`(`+`(`*`(`^`(w, 2)), 1), `/`(1, 2)))), `+`(w, `-`(`*`(`^`(`+`(`*`(`^`(w, 2)), 1), `/`(1, 2))))) 

Consider the positive solution for Typesetting:-mrow(Typesetting:-mi(.  

 

 

 

Set Typesetting:-mrow(Typesetting:-msup(Typesetting:-mo( and solve for Typesetting:-mrow(Typesetting:-mi( 

 

Use the template Typesetting:-mrow(Typesetting:-msup(Typesetting:-mo( template in the Expression palette and the equation number for the positive solution of Typesetting:-mrow(Typesetting:-mi( to form the equation. (Typing "e" does not generate the base of the exponential function.  Use the Palette.) 

 

HyperlinkImage 

 

Right-click, Solve>Obtain Solutions for>Typesetting:-mrow(Typesetting:-mi(.  

 

HyperlinkImage 

 

Right-click, Evaluate at a point, set Typesetting:-mrow(Typesetting:-mi(, [Enter].  

 

HyperlinkImage 

 

Alternatively, copy the solution for Typesetting:-mrow(Typesetting:-mi( ([Ctrl]-drag) to a new line and change Typesetting:-mrow(Typesetting:-mi( to Typesetting:-mrow(Typesetting:-mi( and Typesetting:-mrow(Typesetting:-mi( to Typesetting:-mrow(Typesetting:-mi(. 

Typesetting:-mrow(Typesetting:-mi( 

`+`(w, `*`(`^`(`+`(`*`(`^`(w, 2)), 1), `/`(1, 2)))) (3.5)
 

Typesetting:-mrow(Typesetting:-msup(Typesetting:-mo( 

exp(z) = `+`(w, `*`(`^`(`+`(`*`(`^`(w, 2)), 1), `/`(1, 2)))) (3.6)
 

Typesetting:-mrow(Typesetting:-mi(ln(`+`(w, `*`(`^`(`+`(`*`(`^`(w, 2)), 1), `/`(1, 2))))) 

 

Typesetting:-mrow(Typesetting:-mi(ln(`+`(z, `*`(`^`(`+`(`*`(`^`(z, 2)), 1), `/`(1, 2))))) 

 

 

 

Legal Notice: The copyright for this application is owned by Maplesoft. The application is intended to demonstrate the use of Maple to solve a particular problem. It has been made available for product evaluation purposes only and may not be used in any other context without the express permission of Maplesoft.   

Image