Application Center - Maplesoft

App Preview:

Power Series

You can switch back to the summary page by clicking here.

Learn about Maple
Download Application


 

Image 

Power Series 

? Maplesoft, a division of Waterloo Maple Inc., 2007 

Introduction 

This application is one of a collection of examples teaching Calculus with Maple. These applications use Clickable Calculus? methods to solve problems interactively. Steps are given at every stage of the solution, and many are illustrated using short video clips.  Click on theImage buttons to watch the videos. 

The steps in the document can be repeated to solve similar problems. 

Problem Statement 

Obtain the radius of convergence and the interval of convergence for the power series Typesetting:-mrow(Typesetting:-munderover(Typesetting:-mo(. 

Solution 

Radius of Convergence 

 

Step 

Result 

Compute the radius of convergence. 

 

Enter the expression for the general coefficient and press [Enter].  

 

 

 

 

Tools>Tasks>Browse>Calculus>Radius of Convergence. Click Insert Minimal  Content. Enter in the relevant information. 

 

HyperlinkImage 

Typesetting:-mrow(Typesetting:-mfrac(Typesetting:-mi( 

`/`(`*`(k), `*`(`+`(`*`(`^`(k, 2)), 2), `*`(`^`(3, k)))) (1)
 

 

 

Ratio-Test Method for Radius of Convergence of Typesetting:-mstyle(Typesetting:-mi(Typesetting:-mstyle(Typesetting:-mi( and Typesetting:-mstyle(Typesetting:-mi( fixed integers, Typesetting:-mstyle(Typesetting:-mi( and Typesetting:-mstyle(Typesetting:-mi( positive: 

General term Typesetting:-mstyle(Typesetting:-mi( 

> Typesetting:-mstyle(Typesetting:-mi(
 

`/`(`*`(k), `*`(`+`(`*`(`^`(k, 2)), 2), `*`(`^`(3, k)))) (2)
 

Enter Typesetting:-mstyle(Typesetting:-mi(, the coefficient of Typesetting:-mstyle(Typesetting:-mi( in the power of Typesetting:-mstyle(Typesetting:-mi( in the general term: 

> Typesetting:-mstyle(Typesetting:-mi(
 

1 (3)
 

Radius of Convergence 

> Typesetting:-mstyle(Typesetting:-mi(
 

3 (4)
 

> Typesetting:-mstyle(Typesetting:-mi(
 

 

Thus the radius of convergence of the series is Typesetting:-mrow(Typesetting:-mi(.  

 

Interval of Convergence 

 

Note that the center of the interval of convergence is Typesetting:-mrow(Typesetting:-mi(. To this, add and subtract Typesetting:-mrow(Typesetting:-mi(, where Typesetting:-mrow(Typesetting:-mi( is the radius of convergence. Thus, the interval of convergence is at least  

 

Typesetting:-mrow(Typesetting:-mfenced(Typesetting:-mrow(Typesetting:-mo( 

 

To determine the convergence of the series at the endpoints of this interval, substitute into the general term for the series, the endpoint values for Typesetting:-mrow(Typesetting:-mi(; then test the convergence of the resulting series. At Typesetting:-mrow(Typesetting:-mi(, the series takes the form  

 

Typesetting:-mrow(Typesetting:-munderover(Typesetting:-mo(. 

 

At Typesetting:-mrow(Typesetting:-mi(, the series takes the form  

 

Typesetting:-mrow(Typesetting:-munderover(Typesetting:-mo(. 

 

Step 

Result 

Test convergence at the point Typesetting:-mrow(Typesetting:-mi(.  

 

Use the Integral test to determine the convergence of the series. Use the definite integral template in the Expression palette to define the integral. 

 

HyperlinkImage 

Typesetting:-mrow(Typesetting:-msubsup(Typesetting:-mo( 

infinity (5)
 

 

Test convergence at the point Typesetting:-mrow(Typesetting:-mi(.  

 

Use the alternating series test to test the convergences of the relevant series. Use the limit template from the Expression palette  to enter the expression for the limit. Press [Enter] to evaluate. 

 

HyperlinkImage  

 

Show that the general term is (eventually) decreasing by considering it as a function of Typesetting:-mrow(Typesetting:-mi( and taking its derivative. Enter the expression for the function, press [Enter], right-click, Differentiate>Typesetting:-mrow(Typesetting:-mi(.Right-click, Simplify. 

 

HyperlinkImage 

Typesetting:-mrow(Typesetting:-munder(Typesetting:-mo( 

0 (6)
 

 

 

Typesetting:-mrow(Typesetting:-mfrac(Typesetting:-mi( 

`/`(`*`(k), `*`(`+`(`*`(`^`(k, 2)), 2))) (7)
 

Typesetting:-mover(Typesetting:-mo( 

`+`(`/`(1, `*`(`+`(`*`(`^`(k, 2)), 2))), `-`(`/`(`*`(2, `*`(`^`(k, 2))), `*`(`^`(`+`(`*`(`^`(k, 2)), 2), 2))))) (8)
 

Typesetting:-mover(Typesetting:-mo( 

`+`(`-`(`/`(`*`(`+`(`*`(`^`(k, 2)), `-`(2))), `*`(`^`(`+`(`*`(`^`(k, 2)), 2), 2))))) (9)
 

 

 

Since Typesetting:-mrow(Typesetting:-msubsup(Typesetting:-mo(the Integral test indicates that at Typesetting:-mrow(Typesetting:-mi( the series diverges.  

 

At Typesetting:-mrow(Typesetting:-mi(, Typesetting:-mrow(Typesetting:-munder(Typesetting:-mo( and when considered as a function of Typesetting:-mrow(Typesetting:-mi( where Typesetting:-mrow(Typesetting:-mi( is taken to be a continuous variable, the function is decreasing for all Typesetting:-mrow(Typesetting:-mi(. Thus, the general term is decreasing for all Typesetting:-mrow(Typesetting:-mi(. By the Alternating Series Test, the series is conditionally convergent at Typesetting:-mrow(Typesetting:-mi( (but not absolutely convergent). Thus, the interval of convergence for the series is  

 

Typesetting:-mrow(Typesetting:-mfenced(Typesetting:-mrow(Typesetting:-mo( 

 

 

Legal Notice: The copyright for this application is owned by Maplesoft. The application is intended to demonstrate the use of Maple to solve a particular problem. It has been made available for product evaluation purposes only and may not be used in any other context without the express permission of Maplesoft.   

Image