Application Center - Maplesoft

App Preview:

Hankel Matrix

You can switch back to the summary page by clicking here.

Learn about Maple
Download Application


 

Image 

Hankel Matrix 

 

Univ.-Prof. Dr.-Ing. habil. Josef  BETTEN  
RWTH University Aachen
Mathematical Models in Materials Science and Continuum Mechanics
Augustinerbach 4-20
D-52056  A a c h e n ,  Germany
betten@mmw.rwth-aachen.de 

 

 

Abstract 

 

Using MAPLE 11, properties of  the Hankel Matrix have been discussed and some representations have been proposed. 

 

Keywords:  Hankel form and matrix; principal minors; forming of  Hankel matrices 

 

Definitions 

 

> restart:
 

                                              

> with(LinearAlgebra):
 

We consider the following sequence of  2n-1 numbers 

> seq(a[n],n=0..3),__,a[2*n-2];
 

a[0], a[1], a[2], a[3], __, a[`+`(`*`(2, `*`(n)), `-`(2))] (1)
 

which may be the coefficients of  a quadratic form in  n  variables: 

> Q(x,x):=sum(sum(a[i+k]*x[i]*x[k],i=0..n-1),k=0..n-1);
 

`:=`(Q(x, x), sum(sum(`*`(a[`+`(i, k)], `*`(x[i], `*`(x[k]))), i = 0 .. `+`(n, `-`(1))), k = 0 .. `+`(n, `-`(1)))) (2)
 

This is called a Hankel form. The symmetric matrix 

> Matrix([a[i+k],i=0..n-1,k=0..n-1]);
 

Typesetting:-mrow(Typesetting:-maction(Typesetting:-mfenced(Typesetting:-mrow(Typesetting:-mtable(Typesetting:-mtr(Typesetting:-mtd(Typesetting:-msub(Typesetting:-mi( (3)
 

corresponding to that form is called a Hankel matrix. It can be written as: 

> A[Hankel]:=Matrix([[seq(a[n],n=0..3),__,a[N-1]],
[seq(a[n],n=1..4),__,a[N]],
[seq(a[n],n=2..5),__,a[N+1]],
[seq(a[n],n=3..6),__,a[N+2]],
[???,???,???,???,???,???],
[a[N-1],a[N],a[N+1],a[N+2],__,a[2*N-2]]]);
 

Typesetting:-mrow(Typesetting:-mrow(Typesetting:-msub(Typesetting:-mi( (4)
 

 

Principal Minors 

 

The sequence of  principal minors of  the Hankel matrix is denoted by 

> seq(D[q],q=1..3),__,D[N];
 

D[1], D[2], D[3], __, D[N] (5)
 

If the first  j  rows of  the Hankel matrix are linear independent, but the first  j+1  rows 

linear dependent, then 

> D[j]=not_equal_to_zero;
 

D[j] = not_equal_to_zero (6)
 

Examples: 

> Hankel[3*columns]:=HankelMatrix([seq(a[n],n=0..4)]);
 

Typesetting:-mrow(Typesetting:-mrow(Typesetting:-msub(Typesetting:-mi( (7)
 

> for i in [1,2,3] do
principal_minor[i,i]:=Minor(Hankel[3*columns],i,i, output=['matrix','determinant'],method='minor')
od;
 

Typesetting:-mrow(Typesetting:-mrow(Typesetting:-msub(Typesetting:-mi( (8)
 

Typesetting:-mrow(Typesetting:-mrow(Typesetting:-msub(Typesetting:-mi( (8)
 

Typesetting:-mrow(Typesetting:-mrow(Typesetting:-msub(Typesetting:-mi( (8)
 

> Hankel[4*rows]:=HankelMatrix([seq(a[n],n=0..6)]);
 

Typesetting:-mrow(Typesetting:-mrow(Typesetting:-msub(Typesetting:-mi( (9)
 

> for i in [1,2,3,4] do
principal_minor[i,i]:=Minor(Hankel[4*rows],i,i, output=['matrix','determinant'],method='minor')
od;
 

Typesetting:-mrow(Typesetting:-mrow(Typesetting:-msub(Typesetting:-mi( (10)
 

Typesetting:-mrow(Typesetting:-mrow(Typesetting:-msub(Typesetting:-mi( (10)
 

Typesetting:-mrow(Typesetting:-mrow(Typesetting:-msub(Typesetting:-mi( (10)
 

Typesetting:-mrow(Typesetting:-mrow(Typesetting:-msub(Typesetting:-mi( (10)
 

The Hankel Matrix formed from the first j Rows 

 

The first j+1 rows of the Hankel matrix are denoted by 

> seq(R[q],q=1..3),__,R[j+1];
 

R[1], R[2], R[3], __, R[`+`(j, 1)] (11)
 

where 

 

> seq(R[q],q=1..3),__,R[j];
 

R[1], R[2], R[3], __, R[j] (12)
 

are linearly indepedent and R[j+1] is expressed linearly in terms of  them: 

> R[j+1]:=sum(c[p]*R[j-p+1],p=1..j);
 

`:=`(R[`+`(j, 1)], sum(`*`(c[p], `*`(R[`+`(j, `-`(p), 1)])), p = 1 .. j)) (13)
 

The matrix formed from the first j rows is: 

> M[R[1]..R[j]]:=Matrix([[a[0],a[1],a[2],__,a[N-1]],
[a[1],a[2],a[3],__,a[N]],
[???,???,???,???,???],
[a[j-1],a[j],a[j+1],__,a[j+N-2]]]);
 

Typesetting:-mrow(Typesetting:-mrow(Typesetting:-msub(Typesetting:-mi( (14)
 

This matrix is of rank  J < N. 

 

Construction of  Hankel Matrices 

 

Hankel matrices are symmetric and can be constructed, for instance, in the 

following ways: 

> restart:
 

> with(LinearAlgebra):
 

> HANKEL[N=1..5]:=seq(Matrix(N,N,(i,k)->a[i-1+k-1]),N=1..5);
 

Typesetting:-mrow(Typesetting:-mrow(Typesetting:-msub(Typesetting:-mi( (15)
 

where  N  is the number of columns or row. There are an odd number  

of   p = 2*N-1  different elements. 

> restart:
 

> with(LinearAlgebra):
 

> for p in [1,3,5,7,9] do
Hankel_matrix[p*different_elements]:= HankelMatrix([seq(a[n],n=0..p-1)])
od;
 

Typesetting:-mrow(Typesetting:-mrow(Typesetting:-msub(Typesetting:-mi( (16)
 

Typesetting:-mrow(Typesetting:-mrow(Typesetting:-msub(Typesetting:-mi( (16)
 

Typesetting:-mrow(Typesetting:-mrow(Typesetting:-msub(Typesetting:-mi( (16)
 

Typesetting:-mrow(Typesetting:-mrow(Typesetting:-msub(Typesetting:-mi( (16)
 

Typesetting:-mrow(Typesetting:-mrow(Typesetting:-msub(Typesetting:-mi( (16)
 

These matrices are of rank N, if  p = 2*N-1  is the odd number of different elements: 

> for p in [1,3,5,7,9] do
rank[p*different_elements]:= Rank(HankelMatrix([seq(a[n],n=0..p-1)]))
od;
 

`:=`(rank[different_elements], 1) (17)
 

`:=`(rank[`+`(`*`(3, `*`(different_elements)))], 2) (17)
 

`:=`(rank[`+`(`*`(5, `*`(different_elements)))], 3) (17)
 

`:=`(rank[`+`(`*`(7, `*`(different_elements)))], 4) (17)
 

`:=`(rank[`+`(`*`(9, `*`(different_elements)))], 5) (17)
 

Further properties of  the Hankel Matrix and other forms have been discussed in: 

Gantmacher, F.R.: The Theory of Matrices, Volume I and II, Chelsea Publishing Company,  New York 1977. 


Legal Notice: The copyright for this application is owned by the author(s). Neither Maplesoft nor the author are responsible for any errors contained within and are not liable for any damages resulting from the use of this material. This application is intended for non-commercial, non-profit use only. Contact the author for permission if you wish to use this application in for-profit activities.
 

Image