Hankel Matrix
Univ.-Prof. Dr.-Ing. habil. Josef BETTEN
RWTH University Aachen
Mathematical Models in Materials Science and Continuum Mechanics
Augustinerbach 4-20
D-52056 A a c h e n , Germany
betten@mmw.rwth-aachen.de
Abstract
Using MAPLE 11, properties of the Hankel Matrix have been discussed and some representations have been proposed.
Keywords: Hankel form and matrix; principal minors; forming of Hankel matrices
Definitions
We consider the following sequence of 2n-1 numbers
> |
seq(a[n],n=0..3),__,a[2*n-2]; |
![a[0], a[1], a[2], a[3], __, a[`+`(`*`(2, `*`(n)), `-`(2))]](/view.aspx?SI=5607/HankelMatrix_2.gif) |
(1) |
which may be the coefficients of a quadratic form in n variables:
> |
Q(x,x):=sum(sum(a[i+k]*x[i]*x[k],i=0..n-1),k=0..n-1); |
![`:=`(Q(x, x), sum(sum(`*`(a[`+`(i, k)], `*`(x[i], `*`(x[k]))), i = 0 .. `+`(n, `-`(1))), k = 0 .. `+`(n, `-`(1))))](/view.aspx?SI=5607/HankelMatrix_3.gif) |
(2) |
This is called a Hankel form. The symmetric matrix
> |
Matrix([a[i+k],i=0..n-1,k=0..n-1]); |
 |
(3) |
corresponding to that form is called a Hankel matrix. It can be written as:
> |
A[Hankel]:=Matrix([[seq(a[n],n=0..3),__,a[N-1]],
[seq(a[n],n=1..4),__,a[N]],
[seq(a[n],n=2..5),__,a[N+1]],
[seq(a[n],n=3..6),__,a[N+2]],
[???,???,???,???,???,???],
[a[N-1],a[N],a[N+1],a[N+2],__,a[2*N-2]]]); |
 |
(4) |
Principal Minors
The sequence of principal minors of the Hankel matrix is denoted by
> |
seq(D[q],q=1..3),__,D[N]; |
![D[1], D[2], D[3], __, D[N]](/view.aspx?SI=5607/HankelMatrix_6.gif) |
(5) |
If the first j rows of the Hankel matrix are linear independent, but the first j+1 rows
linear dependent, then
> |
D[j]=not_equal_to_zero; |
![D[j] = not_equal_to_zero](/view.aspx?SI=5607/HankelMatrix_7.gif) |
(6) |
Examples:
> |
Hankel[3*columns]:=HankelMatrix([seq(a[n],n=0..4)]); |
 |
(7) |
> |
for i in [1,2,3] do
principal_minor[i,i]:=Minor(Hankel[3*columns],i,i, output=['matrix','determinant'],method='minor')
od; |
 |
(8) |
 |
(8) |
 |
(8) |
> |
Hankel[4*rows]:=HankelMatrix([seq(a[n],n=0..6)]); |
 |
(9) |
> |
for i in [1,2,3,4] do
principal_minor[i,i]:=Minor(Hankel[4*rows],i,i, output=['matrix','determinant'],method='minor')
od; |
 |
(10) |
 |
(10) |
 |
(10) |
 |
(10) |
The Hankel Matrix formed from the first j Rows
The first j+1 rows of the Hankel matrix are denoted by
> |
seq(R[q],q=1..3),__,R[j+1]; |
![R[1], R[2], R[3], __, R[`+`(j, 1)]](/view.aspx?SI=5607/HankelMatrix_17.gif) |
(11) |
where
> |
seq(R[q],q=1..3),__,R[j]; |
![R[1], R[2], R[3], __, R[j]](/view.aspx?SI=5607/HankelMatrix_18.gif) |
(12) |
are linearly indepedent and R[j+1] is expressed linearly in terms of them:
> |
R[j+1]:=sum(c[p]*R[j-p+1],p=1..j); |
![`:=`(R[`+`(j, 1)], sum(`*`(c[p], `*`(R[`+`(j, `-`(p), 1)])), p = 1 .. j))](/view.aspx?SI=5607/HankelMatrix_19.gif) |
(13) |
The matrix formed from the first j rows is:
> |
M[R[1]..R[j]]:=Matrix([[a[0],a[1],a[2],__,a[N-1]],
[a[1],a[2],a[3],__,a[N]],
[???,???,???,???,???],
[a[j-1],a[j],a[j+1],__,a[j+N-2]]]); |
 |
(14) |
This matrix is of rank J < N.
Construction of Hankel Matrices
Hankel matrices are symmetric and can be constructed, for instance, in the
following ways:
> |
HANKEL[N=1..5]:=seq(Matrix(N,N,(i,k)->a[i-1+k-1]),N=1..5); |
 |
(15) |
where N is the number of columns or row. There are an odd number
of p = 2*N-1 different elements.
> |
for p in [1,3,5,7,9] do
Hankel_matrix[p*different_elements]:= HankelMatrix([seq(a[n],n=0..p-1)])
od; |
 |
(16) |
 |
(16) |
 |
(16) |
 |
(16) |
 |
(16) |
These matrices are of rank N, if p = 2*N-1 is the odd number of different elements:
> |
for p in [1,3,5,7,9] do
rank[p*different_elements]:= Rank(HankelMatrix([seq(a[n],n=0..p-1)]))
od; |
![`:=`(rank[different_elements], 1)](/view.aspx?SI=5607/HankelMatrix_27.gif) |
(17) |
![`:=`(rank[`+`(`*`(3, `*`(different_elements)))], 2)](/view.aspx?SI=5607/HankelMatrix_28.gif) |
(17) |
![`:=`(rank[`+`(`*`(5, `*`(different_elements)))], 3)](/view.aspx?SI=5607/HankelMatrix_29.gif) |
(17) |
![`:=`(rank[`+`(`*`(7, `*`(different_elements)))], 4)](/view.aspx?SI=5607/HankelMatrix_30.gif) |
(17) |
![`:=`(rank[`+`(`*`(9, `*`(different_elements)))], 5)](/view.aspx?SI=5607/HankelMatrix_31.gif) |
(17) |
Further properties of the Hankel Matrix and other forms have been discussed in:
Gantmacher, F.R.: The Theory of Matrices, Volume I and II, Chelsea Publishing Company, New York 1977.
Legal Notice: The copyright for this application is owned by the author(s). Neither Maplesoft nor the author are responsible for any errors contained within and are not liable for any damages resulting from the use of this material. This application is intended for non-commercial, non-profit use only. Contact the author for permission if you wish to use this application in for-profit activities.