Application Center - Maplesoft

App Preview:

Relaxation due to the Sqrt(t)-Law in Comparison with the MAXWELL-Fluid

You can switch back to the summary page by clicking here.

Learn about Maple
Download Application


 

Image 

Relaxation due to the Sqrt(t)-Law in Comparison with the MAXWELL-Fluid 

Univ.-Prof. Dr.-Ing. habil. Josef  BETTEN 

RWTH Aachen University 

Templergraben 55 

D-52056  A a c h e n  

betten@mmw.rwth-aachen.de 

                                                               

           

This worksheet is concerned with the relaxation functions (11.72 a, b) taken   

from BETTEN's book: Creep Mechanics, Third Edition, Springer-Verlag 2008. 

  

> restart:

 

 

> S(t,B):=sigma(t,B)/sigma(0)=exp(-B*sqrt(t));                                    # sqrt(t)-law (11.72a)

 

`:=`(S(t, B), `/`(`*`(sigma(t, B)), `*`(sigma(0))) = exp(`+`(`-`(`*`(B, `*`(`^`(t, `/`(1, 2)))))))) (1)

 

> s(t,b):=sigma(t,b)/sigma(0)=exp(-b*t);                                          # MAXWELL-fluid (11.72b)

 

`:=`(s(t, b), `/`(`*`(sigma(t, b)), `*`(sigma(0))) = exp(`+`(`-`(`*`(b, `*`(t)))))) (2)

 

In the following example, the parameters  b = B = [1/2, 1]  have been assumed. 

> for i in [1/2,1] do S(t,i):=subs(B=i,exp(-B*sqrt(t))) od;

 

`:=`(S(t, `/`(1, 2)), exp(`+`(`-`(`/`(`*`(`^`(t, `/`(1, 2))), `*`(2)))))) (3)

 

`:=`(S(t, 1), exp(`+`(`-`(`*`(`^`(t, `/`(1, 2))))))) (3)

 

> for i in [1/2,1] do s(t,i):=subs(b=i,exp(-b*t)) od;

 

`:=`(s(t, `/`(1, 2)), exp(`+`(`-`(`/`(`*`(t), `*`(2)))))) (4)

 

`:=`(s(t, 1), exp(`+`(`-`(t)))) (4)

 

>  

 

> alias(H=Heaviside,th=thickness,co=color):

 

> p[1]:=plot({S(t,1/2),S(t,1)},t=0..2,0..1,              axes=boxed,th=3,co=black):

 

> p[2]:=plot({s(t,1/2),s(t,1)},t=0..2,linestyle=4,co=black,      title="Relaxation,  b = B = [1/2, 1]"):

 

> p[3]:=plot(H(t-1),t=0.99..1.001,co=black,linestyle=3):

 

> p[4]:=plot(H(t-2),t=1.99..2.001,co=black):

 

> p[5]:=plots[textplot]({[1.25,0.2,`B = 1`],                           [1.25,0.65,`B = 1/2`]}):

 

> plots[display](seq(p[k],k=1..5));

 

Plot_2d  

 

  The solid lines in this Figure refer to the equation  S(t, B), while the dashdot lines 

represent the relaxation function  s(t, b). The difference between these two functions 

(11.72a,b) in a range of  t = [0, 2], also called the distance of the two relaxation  

functions, can be expressed by the L-two-error norm defined as: 

   

> L[2][Norm]:=            sqrt((1/(t[1]-t[0]))*Int((Y(t,B)-y(t,b))^2,t=t[0]..t[1]));

 

 

 

`:=`(L[2][Norm], `*`(`^`(`+`(`*`(`/`(1, `*`(`+`(t[1], `-`(t[0])))), `*`(Int(`*`(`^`(`+`(Y(t, B), `-`(y(t, b))), 2)), t = t[0] .. t[1])))), `/`(1, 2)))) (5)

 

For example, for  b = B = 1  on  [0..1], [1..2], and [0..2]  we calculate the following  

values:  

 

> L[2][Norm][0..1]:=sqrt(Int((S(t)-s(t))^2,t=0..1))=  evalf(sqrt(int((S(t,1)-s(t,1))^2,t=0..1)),4);

 

`:=`(L[2][Norm][0 .. 1], `*`(`^`(Int(`*`(`^`(`+`(S(t), `-`(s(t))), 2)), t = 0 .. 1), `/`(1, 2))) = .1225) (6)

 

> L[2][Norm][1..2]:=sqrt(Int((S(t)-s(t))^2,t=1..2))= evalf(sqrt(int((S(t,1)-s(t,1))^2,t=1..2)),4);

 

`:=`(L[2][Norm][1 .. 2], `*`(`^`(Int(`*`(`^`(`+`(S(t), `-`(s(t))), 2)), t = 1 .. 2), `/`(1, 2))) = 0.7090e-1) (7)

 

> L[2][Norm][0..2]:=sqrt((1/2)*Int((S(t)-s(t))^2,t=0..2))= evalf(sqrt((1/2)*int((S(t,1)-s(t,1))^2,t=0..2)),4);

 

`:=`(L[2][Norm][0 .. 2], `+`(`*`(`/`(1, 2), `*`(`*`(`^`(2, `/`(1, 2)), `*`(`^`(Int(`*`(`^`(`+`(S(t), `-`(s(t))), 2)), t = 0 .. 2), `/`(1, 2))))))) = 0.9950e-1) (8)

 

  These distances are based upon the assumption  b = B. However, one can find an optimal 

parameter  b[opt]  as a function of  B , so that the simple function  s(t, b) can be considered  

as the best "best  approximation"  to the sqrt(t)-law  S(t, B). Thus, one can use the simple  

evolutional equation    

> restart:

 

> dgl:=Diff(s(t,b),t)=-b*s(t,b);

 

`:=`(dgl, Diff(s(t, b), t) = `+`(`-`(`*`(b, `*`(s(t, b)))))) (9)

 

instead of  the evolutional equation 

> Dgl:=Diff(S(t,B),t)=(1/2)*B^2*S(t,B)/ln(S(t,B));

 

`:=`(Dgl, Diff(S(t, B), t) = `+`(`*`(`/`(1, 2), `*`(`/`(`*`(`^`(B, 2), `*`(S(t, B))), `*`(ln(S(t, B)))))))) (10)

 

based upon the sqrt(t)-law  S(t, B). 

  One can find an optimal parameter  b[opt]  by minimizing the L-two-norm,  

as shown in the following MAPLE worksheet: 

 

> L[2](b,B):=                 sqrt((1/2)*Int((exp(-B*sqrt(t))-exp(-b*t))^2,t=0..2));

 

`:=`(L[2](b, B), `+`(`*`(`/`(1, 2), `*`(`*`(`^`(2, `/`(1, 2)), `*`(`^`(Int(`*`(`^`(`+`(exp(`+`(`-`(`*`(B, `*`(`^`(t, `/`(1, 2))))))), `-`(exp(`+`(`-`(`*`(b, `*`(t))))))), 2)), t = 0 .. 2), `/`(1, 2)))... (11)

 

Minimizing the integral, we arrive at the following results: 

> INT(b)[B]:=                     simplify(int((exp(-B*sqrt(t))-exp(-b*t))^2,t=0..2)):

 

> D(b)[B]:=diff(INT(b)[B],b):

 

> for i in [1/4,1/2,3/4,1,5/4,3/2,7/4,2] do              D(b)[i]:=subs(B=i,D(b)[B]) od:

 

> for i in [1/4,1/2,3/4,1,5/4,3/2,7/4,2] do        b[opt][B=i]:=fsolve(D(b)[i]=0,b) od;

 

`:=`(b[opt][B = `/`(1, 4)], .2186267466) (12)

 

`:=`(b[opt][B = `/`(1, 2)], .4541329692) (12)

 

`:=`(b[opt][B = `/`(3, 4)], .7146838538) (12)

 

`:=`(b[opt][B = 1], 1.013007567) (12)

 

`:=`(b[opt][B = `/`(5, 4)], 1.368639799) (12)

 

`:=`(b[opt][B = `/`(3, 2)], 1.808748370) (12)

 

`:=`(b[opt][B = `/`(7, 4)], 2.361214973) (12)

 

`:=`(b[opt][B = 2], 3.037813767) (12)

 

> data:=[0,0],[1/4,0.219],[1/2,0.454],[3/4,0.715],                              [1,1.013],[5/4,1.37],[3/2,1.81],[7/4,2.36],[2,3.04];

 

`:=`(data, [0, 0], [`/`(1, 4), .219], [`/`(1, 2), .454], [`/`(3, 4), .715], [1, 1.013], [`/`(5, 4), 1.37], [`/`(3, 2), 1.81], [`/`(7, 4), 2.36], [2, 3.04]) (13)

 

> plot([data],B=0..2,scaling=constrained,    style=point,symbol=cross,symbolsize=50);

 

Plot_2d  

 

From these data we find a cubic parabola by using the least-squares method:  

> with(stats):

 

> fit[leastsquare[[x,y],y=a[1]*x+a[2]*x^2+a[3]*x^3,{a[1],a[2],a[3]}]] ([[0,1/4,1/2,3/4,1,5/4,3/2,7/4,2], [0,0.219,0.454,0.715,1.013,1.37,1.81,2.36,3.04]]);

 

y = `+`(`*`(.9267057465, `*`(x)), `-`(`*`(.1335134199, `*`(`^`(x, 2)))), `*`(.2146947118, `*`(`^`(x, 3)))) (14)

 

> b[opt]:=0.92671*B-0.13351*B^2+0.214695*B^3;

 

`:=`(b[opt], `+`(`*`(.92671, `*`(B)), `-`(`*`(.13351, `*`(`^`(B, 2)))), `*`(.214695, `*`(`^`(B, 3))))) (15)

 

> alias(H=Heaviside,th=thickness,co=color):

 

> p[1]:=plot([data],B=0..2,scaling=constrained, style=point,symbol=cross,symbolsize=50,                              title="b[opt]  as a function  of  B"):

 

> p[2]:=plot(b[opt],B=0..2,0..3,th=3,co=black,axes=boxed):

 

> p[3]:=plot(3*H(B-1),B=0.99..1.001,linestyle=4,co=black):

 

> p[4]:=plot({1,B},B=0..2,linestyle=3,co=black):

 

> plots[display](seq(p[k],k=1..4));

 

Plot_2d  

 

 

 

 

 

  The next Figure represents the relaxation curves  S(t, B) and s(t, b) for the 

parameter combinations                                                                                                                                                           {[b = B = 2], [b = 3.04, B = 2]} and {[b = B = 1/2], [b = 0.45, B = 1/2]} 

> restart:

 

> S(t,2):=exp(-2*sqrt(t)); s(t,2):=exp(-2*t); s(t,3.04):=exp(-3.04*t);

 

`:=`(S(t, 2), exp(`+`(`-`(`*`(2, `*`(`^`(t, `/`(1, 2)))))))) (16)

 

`:=`(s(t, 2), exp(`+`(`-`(`*`(2, `*`(t)))))) (16)

 

`:=`(s(t, 3.04), exp(`+`(`-`(`*`(3.04, `*`(t)))))) (16)

 

> S(t,1/2):=exp(-sqrt(t)/2); s(t,1/2):=exp(-t/2); s(t,0.45):=exp(-0.45*t);

 

`:=`(S(t, `/`(1, 2)), exp(`+`(`-`(`/`(`*`(`^`(t, `/`(1, 2))), `*`(2)))))) (17)

 

`:=`(s(t, `/`(1, 2)), exp(`+`(`-`(`/`(`*`(t), `*`(2)))))) (17)

 

`:=`(s(t, .45), exp(`+`(`-`(`*`(.45, `*`(t)))))) (17)

 

> alias(H=Heaviside,th=thickness,co=color):

 

> p[1]:=plot({S(t,2),S(t,1/2)},t=0..2,0..1,th=3,co=black):

 

> p[2]:=plot({s(t,2),s(t,1/2)},t=0..2,axes=boxed,co=black):

 

> p[3]:=plot({s(t,3.04),s(t,0.45)},t=0..2,                 th=2,linestyle=4,co=red):

 

> p[4]:=plot(H(t-1),t=0.99..1.001,linestyle=4,co=black,                                title="[b = B = 2 # b = 3.04] and [b = B = 1/2 # b = 0.45]"):

 

> p[5]:=plots[textplot]({[1.25,0.2,`B = 2`],                           [1.25,0.7,`B = 1/2`]}):

 

> plots[display](seq(p[k],k=1..5));

 

Plot_2d  

 

 

In this Figure the thick  "solid lines"  refer to the parameter  B = [2, 1/2], the thin  

"solid lines" represent  b = B , and the  "dashdot lines"  are the approximations                                                     characterized by  b[opt] = [3.04, 0.45]. 

  The above mentioned parameter combinations yield to the following L-two-norms: 

> L[zwei][b=2][B=2]:=              evalf(sqrt((1/2)*int((S(t,2)-s(t,2))^2,t=0..2)),4);

 

`:=`(L[zwei][b = 2][B = 2], .1201) (18)

 

> L[zwei][b=3.04][B=2]:=               evalf(sqrt((1/2)*int((S(t,2)-s(t,3.04))^2,t=0..2)),4);

 

`:=`(L[zwei][b = 3.04][B = 2], 0.9271e-1) (19)

 

> L[zwei][b=1/2][B=1/2]:=    evalf(sqrt((1/2)*int((S(t,1/2)-s(t,1/2))^2,t=0..2)),4);

 

`:=`(L[zwei][b = `/`(1, 2)][B = `/`(1, 2)], 0.7935e-1) (20)

 

> L[zwei][b=0.45][B=1/2]:=   evalf(sqrt((1/2)*int((S(t,1/2)-s(t,0.45))^2,t=0..2)),4);

 

`:=`(L[zwei][b = .45][B = `/`(1, 2)], 0.6663e-1) (21)

 

>  

 

 

 

                                                                   Appendix 

 

A full-length output of  the calculation of  the optimal parameter  b[opt]  as a function 

of the first parameter  B  is listed in the following Worksheet: 

 

> restart:

 

> sqrt((1/2)*Int((exp(-B*sqrt(t))-b*exp(t))^2,t=0..2));

 

`+`(`*`(`/`(1, 2), `*`(`*`(`^`(2, `/`(1, 2)), `*`(`^`(Int(`*`(`^`(`+`(exp(`+`(`-`(`*`(B, `*`(`^`(t, `/`(1, 2))))))), `-`(`*`(b, `*`(exp(t))))), 2)), t = 0 .. 2), `/`(1, 2))))))) (22)

 

> INT(b)[B]:=                     simplify(int((exp(-B*sqrt(t))-exp(-b*t))^2,t=0..2));

 

`:=`(INT(b)[B], `+`(`*`(`/`(1, 2), `*`(`/`(`*`(`+`(`*`(exp(`+`(`*`(2, `*`(B, `*`(`^`(2, `/`(1, 2))))), `*`(4, `*`(b)))), `*`(`^`(b, `/`(3, 2)))), `-`(`*`(3, `*`(exp(`+`(`*`(2, `*`(B, `*`(`^`(2, `/`(1,...
`:=`(INT(b)[B], `+`(`*`(`/`(1, 2), `*`(`/`(`*`(`+`(`*`(exp(`+`(`*`(2, `*`(B, `*`(`^`(2, `/`(1, 2))))), `*`(4, `*`(b)))), `*`(`^`(b, `/`(3, 2)))), `-`(`*`(3, `*`(exp(`+`(`*`(2, `*`(B, `*`(`^`(2, `/`(1,...
`:=`(INT(b)[B], `+`(`*`(`/`(1, 2), `*`(`/`(`*`(`+`(`*`(exp(`+`(`*`(2, `*`(B, `*`(`^`(2, `/`(1, 2))))), `*`(4, `*`(b)))), `*`(`^`(b, `/`(3, 2)))), `-`(`*`(3, `*`(exp(`+`(`*`(2, `*`(B, `*`(`^`(2, `/`(1,...
(23)

 

> D(b)[B]:=diff(INT(b)[B],b);

 

`:=`(D(b)[B], `+`(`*`(`/`(1, 2), `*`(`/`(`*`(`+`(`*`(4, `*`(exp(`+`(`*`(2, `*`(B, `*`(`^`(2, `/`(1, 2))))), `*`(4, `*`(b)))), `*`(`^`(b, `/`(3, 2))))), `*`(`/`(3, 2), `*`(`*`(exp(`+`(`*`(2, `*`(B, `*`...
`:=`(D(b)[B], `+`(`*`(`/`(1, 2), `*`(`/`(`*`(`+`(`*`(4, `*`(exp(`+`(`*`(2, `*`(B, `*`(`^`(2, `/`(1, 2))))), `*`(4, `*`(b)))), `*`(`^`(b, `/`(3, 2))))), `*`(`/`(3, 2), `*`(`*`(exp(`+`(`*`(2, `*`(B, `*`...
`:=`(D(b)[B], `+`(`*`(`/`(1, 2), `*`(`/`(`*`(`+`(`*`(4, `*`(exp(`+`(`*`(2, `*`(B, `*`(`^`(2, `/`(1, 2))))), `*`(4, `*`(b)))), `*`(`^`(b, `/`(3, 2))))), `*`(`/`(3, 2), `*`(`*`(exp(`+`(`*`(2, `*`(B, `*`...
`:=`(D(b)[B], `+`(`*`(`/`(1, 2), `*`(`/`(`*`(`+`(`*`(4, `*`(exp(`+`(`*`(2, `*`(B, `*`(`^`(2, `/`(1, 2))))), `*`(4, `*`(b)))), `*`(`^`(b, `/`(3, 2))))), `*`(`/`(3, 2), `*`(`*`(exp(`+`(`*`(2, `*`(B, `*`...
`:=`(D(b)[B], `+`(`*`(`/`(1, 2), `*`(`/`(`*`(`+`(`*`(4, `*`(exp(`+`(`*`(2, `*`(B, `*`(`^`(2, `/`(1, 2))))), `*`(4, `*`(b)))), `*`(`^`(b, `/`(3, 2))))), `*`(`/`(3, 2), `*`(`*`(exp(`+`(`*`(2, `*`(B, `*`...
`:=`(D(b)[B], `+`(`*`(`/`(1, 2), `*`(`/`(`*`(`+`(`*`(4, `*`(exp(`+`(`*`(2, `*`(B, `*`(`^`(2, `/`(1, 2))))), `*`(4, `*`(b)))), `*`(`^`(b, `/`(3, 2))))), `*`(`/`(3, 2), `*`(`*`(exp(`+`(`*`(2, `*`(B, `*`...
`:=`(D(b)[B], `+`(`*`(`/`(1, 2), `*`(`/`(`*`(`+`(`*`(4, `*`(exp(`+`(`*`(2, `*`(B, `*`(`^`(2, `/`(1, 2))))), `*`(4, `*`(b)))), `*`(`^`(b, `/`(3, 2))))), `*`(`/`(3, 2), `*`(`*`(exp(`+`(`*`(2, `*`(B, `*`...
`:=`(D(b)[B], `+`(`*`(`/`(1, 2), `*`(`/`(`*`(`+`(`*`(4, `*`(exp(`+`(`*`(2, `*`(B, `*`(`^`(2, `/`(1, 2))))), `*`(4, `*`(b)))), `*`(`^`(b, `/`(3, 2))))), `*`(`/`(3, 2), `*`(`*`(exp(`+`(`*`(2, `*`(B, `*`...
`:=`(D(b)[B], `+`(`*`(`/`(1, 2), `*`(`/`(`*`(`+`(`*`(4, `*`(exp(`+`(`*`(2, `*`(B, `*`(`^`(2, `/`(1, 2))))), `*`(4, `*`(b)))), `*`(`^`(b, `/`(3, 2))))), `*`(`/`(3, 2), `*`(`*`(exp(`+`(`*`(2, `*`(B, `*`...
`:=`(D(b)[B], `+`(`*`(`/`(1, 2), `*`(`/`(`*`(`+`(`*`(4, `*`(exp(`+`(`*`(2, `*`(B, `*`(`^`(2, `/`(1, 2))))), `*`(4, `*`(b)))), `*`(`^`(b, `/`(3, 2))))), `*`(`/`(3, 2), `*`(`*`(exp(`+`(`*`(2, `*`(B, `*`...
`:=`(D(b)[B], `+`(`*`(`/`(1, 2), `*`(`/`(`*`(`+`(`*`(4, `*`(exp(`+`(`*`(2, `*`(B, `*`(`^`(2, `/`(1, 2))))), `*`(4, `*`(b)))), `*`(`^`(b, `/`(3, 2))))), `*`(`/`(3, 2), `*`(`*`(exp(`+`(`*`(2, `*`(B, `*`...
`:=`(D(b)[B], `+`(`*`(`/`(1, 2), `*`(`/`(`*`(`+`(`*`(4, `*`(exp(`+`(`*`(2, `*`(B, `*`(`^`(2, `/`(1, 2))))), `*`(4, `*`(b)))), `*`(`^`(b, `/`(3, 2))))), `*`(`/`(3, 2), `*`(`*`(exp(`+`(`*`(2, `*`(B, `*`...
(24)

 

> for i in [1/4,1,2] do D(b)[i]:=subs(B=i,D(b)[B]) od;

 

`:=`(D(b)[`/`(1, 4)], `+`(`/`(`*`(8, `*`(`+`(`*`(4, `*`(exp(`+`(`/`(`*`(`^`(2, `/`(1, 2))), `*`(2)), `*`(4, `*`(b)))), `*`(`^`(b, `/`(3, 2))))), `*`(`/`(3, 4), `*`(`*`(exp(`+`(`/`(`*`(`^`(2, `/`(1, 2)...
`:=`(D(b)[`/`(1, 4)], `+`(`/`(`*`(8, `*`(`+`(`*`(4, `*`(exp(`+`(`/`(`*`(`^`(2, `/`(1, 2))), `*`(2)), `*`(4, `*`(b)))), `*`(`^`(b, `/`(3, 2))))), `*`(`/`(3, 4), `*`(`*`(exp(`+`(`/`(`*`(`^`(2, `/`(1, 2)...
`:=`(D(b)[`/`(1, 4)], `+`(`/`(`*`(8, `*`(`+`(`*`(4, `*`(exp(`+`(`/`(`*`(`^`(2, `/`(1, 2))), `*`(2)), `*`(4, `*`(b)))), `*`(`^`(b, `/`(3, 2))))), `*`(`/`(3, 4), `*`(`*`(exp(`+`(`/`(`*`(`^`(2, `/`(1, 2)...
`:=`(D(b)[`/`(1, 4)], `+`(`/`(`*`(8, `*`(`+`(`*`(4, `*`(exp(`+`(`/`(`*`(`^`(2, `/`(1, 2))), `*`(2)), `*`(4, `*`(b)))), `*`(`^`(b, `/`(3, 2))))), `*`(`/`(3, 4), `*`(`*`(exp(`+`(`/`(`*`(`^`(2, `/`(1, 2)...
`:=`(D(b)[`/`(1, 4)], `+`(`/`(`*`(8, `*`(`+`(`*`(4, `*`(exp(`+`(`/`(`*`(`^`(2, `/`(1, 2))), `*`(2)), `*`(4, `*`(b)))), `*`(`^`(b, `/`(3, 2))))), `*`(`/`(3, 4), `*`(`*`(exp(`+`(`/`(`*`(`^`(2, `/`(1, 2)...
`:=`(D(b)[`/`(1, 4)], `+`(`/`(`*`(8, `*`(`+`(`*`(4, `*`(exp(`+`(`/`(`*`(`^`(2, `/`(1, 2))), `*`(2)), `*`(4, `*`(b)))), `*`(`^`(b, `/`(3, 2))))), `*`(`/`(3, 4), `*`(`*`(exp(`+`(`/`(`*`(`^`(2, `/`(1, 2)...
`:=`(D(b)[`/`(1, 4)], `+`(`/`(`*`(8, `*`(`+`(`*`(4, `*`(exp(`+`(`/`(`*`(`^`(2, `/`(1, 2))), `*`(2)), `*`(4, `*`(b)))), `*`(`^`(b, `/`(3, 2))))), `*`(`/`(3, 4), `*`(`*`(exp(`+`(`/`(`*`(`^`(2, `/`(1, 2)...
`:=`(D(b)[`/`(1, 4)], `+`(`/`(`*`(8, `*`(`+`(`*`(4, `*`(exp(`+`(`/`(`*`(`^`(2, `/`(1, 2))), `*`(2)), `*`(4, `*`(b)))), `*`(`^`(b, `/`(3, 2))))), `*`(`/`(3, 4), `*`(`*`(exp(`+`(`/`(`*`(`^`(2, `/`(1, 2)...
`:=`(D(b)[`/`(1, 4)], `+`(`/`(`*`(8, `*`(`+`(`*`(4, `*`(exp(`+`(`/`(`*`(`^`(2, `/`(1, 2))), `*`(2)), `*`(4, `*`(b)))), `*`(`^`(b, `/`(3, 2))))), `*`(`/`(3, 4), `*`(`*`(exp(`+`(`/`(`*`(`^`(2, `/`(1, 2)...
`:=`(D(b)[`/`(1, 4)], `+`(`/`(`*`(8, `*`(`+`(`*`(4, `*`(exp(`+`(`/`(`*`(`^`(2, `/`(1, 2))), `*`(2)), `*`(4, `*`(b)))), `*`(`^`(b, `/`(3, 2))))), `*`(`/`(3, 4), `*`(`*`(exp(`+`(`/`(`*`(`^`(2, `/`(1, 2)...
`:=`(D(b)[`/`(1, 4)], `+`(`/`(`*`(8, `*`(`+`(`*`(4, `*`(exp(`+`(`/`(`*`(`^`(2, `/`(1, 2))), `*`(2)), `*`(4, `*`(b)))), `*`(`^`(b, `/`(3, 2))))), `*`(`/`(3, 4), `*`(`*`(exp(`+`(`/`(`*`(`^`(2, `/`(1, 2)...
(25)

 

`:=`(D(b)[1], `+`(`*`(`/`(1, 2), `*`(`/`(`*`(`+`(`*`(4, `*`(exp(`+`(`*`(2, `*`(`^`(2, `/`(1, 2)))), `*`(4, `*`(b)))), `*`(`^`(b, `/`(3, 2))))), `-`(`*`(`/`(21, 2), `*`(`*`(exp(`+`(`*`(2, `*`(`^`(2, `/...
`:=`(D(b)[1], `+`(`*`(`/`(1, 2), `*`(`/`(`*`(`+`(`*`(4, `*`(exp(`+`(`*`(2, `*`(`^`(2, `/`(1, 2)))), `*`(4, `*`(b)))), `*`(`^`(b, `/`(3, 2))))), `-`(`*`(`/`(21, 2), `*`(`*`(exp(`+`(`*`(2, `*`(`^`(2, `/...
`:=`(D(b)[1], `+`(`*`(`/`(1, 2), `*`(`/`(`*`(`+`(`*`(4, `*`(exp(`+`(`*`(2, `*`(`^`(2, `/`(1, 2)))), `*`(4, `*`(b)))), `*`(`^`(b, `/`(3, 2))))), `-`(`*`(`/`(21, 2), `*`(`*`(exp(`+`(`*`(2, `*`(`^`(2, `/...
`:=`(D(b)[1], `+`(`*`(`/`(1, 2), `*`(`/`(`*`(`+`(`*`(4, `*`(exp(`+`(`*`(2, `*`(`^`(2, `/`(1, 2)))), `*`(4, `*`(b)))), `*`(`^`(b, `/`(3, 2))))), `-`(`*`(`/`(21, 2), `*`(`*`(exp(`+`(`*`(2, `*`(`^`(2, `/...
`:=`(D(b)[1], `+`(`*`(`/`(1, 2), `*`(`/`(`*`(`+`(`*`(4, `*`(exp(`+`(`*`(2, `*`(`^`(2, `/`(1, 2)))), `*`(4, `*`(b)))), `*`(`^`(b, `/`(3, 2))))), `-`(`*`(`/`(21, 2), `*`(`*`(exp(`+`(`*`(2, `*`(`^`(2, `/...
`:=`(D(b)[1], `+`(`*`(`/`(1, 2), `*`(`/`(`*`(`+`(`*`(4, `*`(exp(`+`(`*`(2, `*`(`^`(2, `/`(1, 2)))), `*`(4, `*`(b)))), `*`(`^`(b, `/`(3, 2))))), `-`(`*`(`/`(21, 2), `*`(`*`(exp(`+`(`*`(2, `*`(`^`(2, `/...
`:=`(D(b)[1], `+`(`*`(`/`(1, 2), `*`(`/`(`*`(`+`(`*`(4, `*`(exp(`+`(`*`(2, `*`(`^`(2, `/`(1, 2)))), `*`(4, `*`(b)))), `*`(`^`(b, `/`(3, 2))))), `-`(`*`(`/`(21, 2), `*`(`*`(exp(`+`(`*`(2, `*`(`^`(2, `/...
`:=`(D(b)[1], `+`(`*`(`/`(1, 2), `*`(`/`(`*`(`+`(`*`(4, `*`(exp(`+`(`*`(2, `*`(`^`(2, `/`(1, 2)))), `*`(4, `*`(b)))), `*`(`^`(b, `/`(3, 2))))), `-`(`*`(`/`(21, 2), `*`(`*`(exp(`+`(`*`(2, `*`(`^`(2, `/...
`:=`(D(b)[1], `+`(`*`(`/`(1, 2), `*`(`/`(`*`(`+`(`*`(4, `*`(exp(`+`(`*`(2, `*`(`^`(2, `/`(1, 2)))), `*`(4, `*`(b)))), `*`(`^`(b, `/`(3, 2))))), `-`(`*`(`/`(21, 2), `*`(`*`(exp(`+`(`*`(2, `*`(`^`(2, `/...
`:=`(D(b)[1], `+`(`*`(`/`(1, 2), `*`(`/`(`*`(`+`(`*`(4, `*`(exp(`+`(`*`(2, `*`(`^`(2, `/`(1, 2)))), `*`(4, `*`(b)))), `*`(`^`(b, `/`(3, 2))))), `-`(`*`(`/`(21, 2), `*`(`*`(exp(`+`(`*`(2, `*`(`^`(2, `/...
(25)

 

`:=`(D(b)[2], `+`(`*`(`/`(1, 8), `*`(`/`(`*`(`+`(`*`(4, `*`(exp(`+`(`*`(4, `*`(`^`(2, `/`(1, 2)))), `*`(4, `*`(b)))), `*`(`^`(b, `/`(3, 2))))), `-`(`*`(`/`(93, 2), `*`(`*`(exp(`+`(`*`(4, `*`(`^`(2, `/...
`:=`(D(b)[2], `+`(`*`(`/`(1, 8), `*`(`/`(`*`(`+`(`*`(4, `*`(exp(`+`(`*`(4, `*`(`^`(2, `/`(1, 2)))), `*`(4, `*`(b)))), `*`(`^`(b, `/`(3, 2))))), `-`(`*`(`/`(93, 2), `*`(`*`(exp(`+`(`*`(4, `*`(`^`(2, `/...
`:=`(D(b)[2], `+`(`*`(`/`(1, 8), `*`(`/`(`*`(`+`(`*`(4, `*`(exp(`+`(`*`(4, `*`(`^`(2, `/`(1, 2)))), `*`(4, `*`(b)))), `*`(`^`(b, `/`(3, 2))))), `-`(`*`(`/`(93, 2), `*`(`*`(exp(`+`(`*`(4, `*`(`^`(2, `/...
`:=`(D(b)[2], `+`(`*`(`/`(1, 8), `*`(`/`(`*`(`+`(`*`(4, `*`(exp(`+`(`*`(4, `*`(`^`(2, `/`(1, 2)))), `*`(4, `*`(b)))), `*`(`^`(b, `/`(3, 2))))), `-`(`*`(`/`(93, 2), `*`(`*`(exp(`+`(`*`(4, `*`(`^`(2, `/...
`:=`(D(b)[2], `+`(`*`(`/`(1, 8), `*`(`/`(`*`(`+`(`*`(4, `*`(exp(`+`(`*`(4, `*`(`^`(2, `/`(1, 2)))), `*`(4, `*`(b)))), `*`(`^`(b, `/`(3, 2))))), `-`(`*`(`/`(93, 2), `*`(`*`(exp(`+`(`*`(4, `*`(`^`(2, `/...
`:=`(D(b)[2], `+`(`*`(`/`(1, 8), `*`(`/`(`*`(`+`(`*`(4, `*`(exp(`+`(`*`(4, `*`(`^`(2, `/`(1, 2)))), `*`(4, `*`(b)))), `*`(`^`(b, `/`(3, 2))))), `-`(`*`(`/`(93, 2), `*`(`*`(exp(`+`(`*`(4, `*`(`^`(2, `/...
`:=`(D(b)[2], `+`(`*`(`/`(1, 8), `*`(`/`(`*`(`+`(`*`(4, `*`(exp(`+`(`*`(4, `*`(`^`(2, `/`(1, 2)))), `*`(4, `*`(b)))), `*`(`^`(b, `/`(3, 2))))), `-`(`*`(`/`(93, 2), `*`(`*`(exp(`+`(`*`(4, `*`(`^`(2, `/...
`:=`(D(b)[2], `+`(`*`(`/`(1, 8), `*`(`/`(`*`(`+`(`*`(4, `*`(exp(`+`(`*`(4, `*`(`^`(2, `/`(1, 2)))), `*`(4, `*`(b)))), `*`(`^`(b, `/`(3, 2))))), `-`(`*`(`/`(93, 2), `*`(`*`(exp(`+`(`*`(4, `*`(`^`(2, `/...
`:=`(D(b)[2], `+`(`*`(`/`(1, 8), `*`(`/`(`*`(`+`(`*`(4, `*`(exp(`+`(`*`(4, `*`(`^`(2, `/`(1, 2)))), `*`(4, `*`(b)))), `*`(`^`(b, `/`(3, 2))))), `-`(`*`(`/`(93, 2), `*`(`*`(exp(`+`(`*`(4, `*`(`^`(2, `/...
`:=`(D(b)[2], `+`(`*`(`/`(1, 8), `*`(`/`(`*`(`+`(`*`(4, `*`(exp(`+`(`*`(4, `*`(`^`(2, `/`(1, 2)))), `*`(4, `*`(b)))), `*`(`^`(b, `/`(3, 2))))), `-`(`*`(`/`(93, 2), `*`(`*`(exp(`+`(`*`(4, `*`(`^`(2, `/...
`:=`(D(b)[2], `+`(`*`(`/`(1, 8), `*`(`/`(`*`(`+`(`*`(4, `*`(exp(`+`(`*`(4, `*`(`^`(2, `/`(1, 2)))), `*`(4, `*`(b)))), `*`(`^`(b, `/`(3, 2))))), `-`(`*`(`/`(93, 2), `*`(`*`(exp(`+`(`*`(4, `*`(`^`(2, `/...
(25)

 

> for i in [1/4,1,2] do b[opt][B=i]:=fsolve(D(b)[i]=0,b) od;

 

`:=`(b[opt][B = `/`(1, 4)], .2186267466) (26)

 

`:=`(b[opt][B = 1], 1.013007567) (26)

 

`:=`(b[opt][B = 2], 3.037813767) (26)

 

 

Legal Notice: The copyright for this application is owned by Maplesoft. The application is intended to demonstrate the use of Maple to solve a particular problem. It has been made available for product evaluation purposes only and may not be used in any other context without the express permission of Maplesoft.  `?`