Application Center - Maplesoft

App Preview:

Vector Addition in 2-D

You can switch back to the summary page by clicking here.

Learn about Maple
Download Application


 

Image 

Visualizing Vector Addition in 2-D 

Plot_2d 

Loading Student:-LinearAlgebra  

Loading plots  

 

Define vector a 

`:=`(a, `<,>`(3, 2)) 

Vector[column](%id = 51848252) (1)
 

Define vector b 

 

`:=`(b, `<,>`(-4, 4)) 

Vector[column](%id = 52210616) (2)
 

Compute the vector sum a + b 

 

`+`(a, b) = Vector[column](%id = 62689568) 

 

Diagram of the vector sum `+`(a, b).  The resultant is shown in black. Important:  There are two ways to draw the sum of two vectors, but the resultant doesn't change!  
It's like taking two different routes to get to the same school.
 

VectorSumPlot(a, b, vectorcolors = [red, blue], show = 1, view = [-4 .. 3, 0 .. 6])
VectorSumPlot(a, b, vectorcolors = [red, blue], show = 1, view = [-4 .. 3, 0 .. 6])
 

Plot_2d
 

 

VectorSumPlot(a, b, vectorcolors = [red, blue]) 

Plot_2d
 

 

 

 

What happens to the sum if we scale vector b by a scalar s? 

`+`(a, `*`(s, `*`(b))) = Vector[column](%id = 52211028) 

 

Animation of the vector sum `+`(a, sb), where s ranges from 0 to 2.   

(Click on the picture, then click play in the animation toolbar.) 

 

Note that the resultant not only lengthens but also changes angle! 

 

animate(VectorSumPlot, [a, `*`(s, `*`(b)), vectorcolors = [red, blue], show = 1], s = 0 .. 2, frames = 100) 

Plot_2d
 

 

Let's add a third vector, c 

`:=`(c, `<,>`(2, 0)) 

Vector[column](%id = 52310596) (3)
 

Here are the vectors we're now working with 

a, b, c 

Vector[column](%id = 63643064), Vector[column](%id = 63643136), Vector[column](%id = 63643200) (4)
 

The vector sum a + b + c 

`+`(a, b, c) = Vector[column](%id = 63962624) 

 

Let's visualize this.   

 

There are six possible "routes" to the tip of the resultant, `<,>`(1, 6):
a + b + ca + c + bb + a + cb + c + ac + a + bc + b + aCan you trace them all?
 

VectorSumPlot(a, b, c, vectorcolors = [red, blue, green]) 

Plot_2d
 

 

 

 

The six routes shown individually 

 

Plot_2d
 

Plot_2d
 

Plot_2d
 

Plot_2d
 

Plot_2d
 

Plot_2d
 

 

What effect does c have on the sum? 

 Here is an animation of the vector sum 

 

`+`(a, b, sc),  

 

where s ranges from  

0 to 3 

 

animate(VectorSumPlot, [a, b, `*`(s, `*`(c)), vectorcolors = [red, blue, green], show = 1], s = 0 .. 3, frames = 100)
animate(VectorSumPlot, [a, b, `*`(s, `*`(c)), vectorcolors = [red, blue, green], show = 1], s = 0 .. 3, frames = 100)
 

Plot_2d