Overview - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

Overview of the QuantumChemistry Package

 

Calling Sequence
Description
List of QuantumChemistry Package Commands
Accessing QuantumChemistry Package Commands

Changing QuantumChemistry Package Settings
Platform-specific Requirements
References
Examples

Calling Sequence

QuantumChemistry[command](arguments)

command(arguments)

Description

• 

The QuantumChemistry package is an environment for computing and visualizing the quantum energies and properties of many-electron atoms and molecules.     

• 

The geometries of molecules can be entered interactively by the user, read from a file, or obtained from a web database containing geometries of more than 96 million molecules.  

• 

Advanced wavefunction, density functional, and reduced density matrix methods are available for computing atomic and molecular energies and properties.

• 

Molecular geometries, densities, and vibrations can be visualized in 3D interactive plots and animations.

• 

Commands can be accessed from a Maple worksheet or document, the command-line interface, or an Interactive Maplet.

• 

Lessons and curricula for chemistry and physics courses, which are directly integrated into the package, can be used for formal courses as well as self study.

• 

For an introductory tutorial, see the QuantumChemistry Package Tutorial Worksheet.

List of QuantumChemistry Package Commands

The following is a list of commands (or subpackages) available in the QuantumChemistry package:

AOLabels

ActiveSpaceCI

ActiveSpaceSCF

AtomicData

BondAngles

BondDistances

Charges

ChargesPlot

Chat

ContractedSchrodinger

CorrelationEnergy

CoupledCluster

DensityFunctional

DensityPlot3D

Dipole

DipolePlot

Energy

ExcitationEnergies

ExcitationSpectra

ExcitationSpectraPlot

ExcitedStateEnergies

ExcitedStateSpins

ExcitonDensityPlot

ExcitonPopulations

ExcitonPopulationsPlot

FullCI

GeometryOptimization

HartreeFock

Interactive

Isotopes

LiteratureSearch

MOCoefficients

MODiagram

MOEnergies

MOIntegrals

MOOccupations

MOOccupationsPlot

MOSymmetries

MP2

MolecularData

MolecularDictionary

MolecularGeometry

NuclearEnergy

NuclearGradient

OscillatorStrengths

Parametric2RDM

Purify2RDM

PlotMolecule

Populations

QuantumComputing

RDMFunctional

RDM1

RDM2

RTM1

ReadXYZ

Restore

Save

SaveXYZ

SearchBasisSets

SearchFunctionals

SkeletalStructure

SolventDatabase

Thermodynamics

TransitionDipolePlot

TransitionDipoles

TransitionOrbitalPlot

TransitionOrbitals

Variational2RDM

VibrationalModeAnimation

VibrationalModes

Video

 

Accessing QuantumChemistry Package Commands

• 

Each command in the QuantumChemistry package can be accessed by (1) loading all of the commands in the package through the command with(QuantumChemistry) and (2) calling each command as Command(arguments) with appropriate arguments as described in the command's help page.  See the short form for additional details.

• 

Each command in the QuantumChemistry package can be accessed by calling the package name and the command name in either of the formats: (1)  QuantumChemistry[Command](arguments) or (2) QuantumChemistry:-Command(arguments) with appropriate arguments as described in the command's help page.  See the long form for additional details.    

Changing QuantumChemistry Package Settings

• 

The QuantumChemistry package resets Maple's default precision display from all decimals available to 8 decimals.  The package's precision display can be changed from 8 (default) to 10 by issuing the command QuantumChemistry(displayprecision=10).

• 

This displayprecision affects only the number of digits displayed; the precision of the floating-point arithmetic is set by assigning the environmental variable Digits to an integer representing the number of significant digits; for example, Digits := 15 sets the number of significant digits to 15.  The default setting of Digits in Maple is 10; for the QuantumChemistry package it is recommended that Digits be assigned to 15 for double precision.

• 

The QuantumChemistry package resets Maple's default display of Matrices and Matrix slices from [10,10] to [6,6].  The package's matrix display can be changed from [6,6] (the package's default) to [10,10] (Maple's default) by issuing the command QuantumChemistry(displaymatrix=[10,10]).  

Platform-specific Requirements

• 

On the Windows operating system the commands CoupledCluster, NuclearGradient, and RDMFunctional require the installation of Microsoft's Windows Subsystem for Linux (WSL).  The WSL can be installed before or after installation of the QuantumChemistry package.  For Windows 10 (version 2004 and higher) and Windows 11 you can install the WSL by opening the Command Prompt in administrator mode and entering the command: wsl --install -d Ubuntu  For additional details, please refer to: https://learn.microsoft.com/en-us/windows/wsl/install

References

• 

D. J. Griffiths and D. F. Schroeter, Introduction to Quantum Mechanics 3rd Edition (Cambridge University Press, 2018).

• 

F. Jensen, Introduction to Computational Chemistry 3rd Edition (John Wiley & Sons, New York, 2017).

• 

I. N. Levine, Quantum Chemistry 7th Edition (Pearson, New York, 2017).

• 

J. J. Sakurai and J. Napolitano, Modern Quantum Mechanics 2nd Edition (Cambridge University Press, Cambridge, 2017).

• 

J. P. Lowe, Quantum Chemistry Illustrated Edition (Academic Press, New York, 2012).

• 

P. W. Atkins, J. de Paula, and J. Keeler, Physical Chemistry 12 Edition (Oxford University Press, Oxford, 2023).

• 

P. W. Atkins and R. S. Friedman, Molecular Quantum Mechanics 5th Edition (Oxford University Press, Oxford, 2010).

• 

C. Cramer, Essentials of Computational Chemistry: Theories and Models 2nd Edition (John Wiley & Sons, New York, 2007).

• 

D. A. McQuarrie, Quantum Chemistry 2nd Edition (University Science, New York, 2007).

• 

Reduced Density Matrix Mechanics with Applications to Atoms and Molecules, Volume 134 in the Advances in Chemical Physics series, edited by D. A. Mazziotti  (John Wiley & Sons, New York, 2007).

• 

T. Helgaker, P. Jorgensen, and J. Olsen, Molecular Electronic-Structure Theory (John Wiley & Sons, New York, 2000).

• 

D. A. McQuarrie and J. D. Simon, Physical Chemistry: A Molecular Approach (University Science, New York, 1997).

• 

A. Szabo and N. S. Ostlund, Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory (Dover Books, New York, 1996).
D. A. Mazziotti, Chem. Rev. 112, 244 (2012). "Two-electron reduced density matrix as the basic variable in many-electron quantum chemistry and physics"

• 

Q. Sun, T. C. Berkelbach, N. S. Blunt, G. H. Booth, S. Guo, Z. Li, J. Liu, J. D. McClain, E. R. Sayfutyarova, S. Sharma, S. Wouters, and G. K.-L. Chan, WIRES Computational Molecular Science 8, 1340 (2018). "PySCF: the Python‐based simulations of chemistry framework"

Examples

withQuantumChemistry:

The geometry of the hydrogen fluoride HF molecule is entered as a Maple list of lists

molecule  H,0,0,0,F,0,0,0.95;

moleculeH,0,0,0,F,0,0,0.95000000

(1)

A Hartree-Fock calculation of hydrogen fluoride can be performed with the HartreeFock command

output  HartreeFockmolecule, basis=dz;

A parametric 2RDM calculation of hydrogen fluoride can be performed with the Parametric2RDM command

output  Parametric2RDMmolecule, basis=dz;

For additional examples including examples with visualization see the QuantumChemistry Package Tutorial Worksheet.

See Also

Tutorial Worksheet

Interactive

What's New 2024

 

 


Download Help Document