If the equations define an appropriate change of coordinates whereby a region is mapped to a region , then the following equality of two iterated triple-integrals is valid,
=
where is one of six possible orderings of the differentials , and is one of six possible orderings of the differentials . The integral on the right also contains the absolute value of the Jacobian
Each column in the Jacobian matrix is differentiated with respect to a single variable, whereas the rows are gradients of the functions .
In addition, the Jacobian is the reciprocal of the Jacobian , the Jacobian of the inverse transformation, because the corresponding Jacobian matrices are multiplicative inverses of each other.