Closure - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

DEtools

  

Closure

  

compute the closure of a linear differential operator

 

Calling Sequence

Parameters

Description

Examples

References

Compatibility

Calling Sequence

Closure(L, Dx, x, p, func, tord)

Parameters

L

-

polynomial in Dx with coefficients that are polynomials in x

Dx

-

variable, denoting the differential operator w.r.t. x

x

-

variable

p

-

(optional) irreducible polynomial in x

func

-

(optional) Maple command or user-defined procedure

tord

-

(optional) equation of the form termorder=TO

Description

• 

Let L be a linear differential operator, given as a polynomial in Dx with univariate polynomial coefficients in x over a field  of characteristic zero. The command Closure(L,Dx,x) constructs a basis of the closure of L, whose elements R satisfy  for an operator P and polynomial f in k[x] not dividing P on the left.

• 

If an optional fourth argument p is provided, Closure(L,Dx,x,p) constructs a local closure of L at the irreducible polynomial p. The output is a list of generators whose elements R satisfy .

• 

A function may be specified using the optional argument func. It is applied to the coefficients of the collected result. Often factor or expand will be used.

• 

A Groebner basis computation with respect to a particular term ordering can be applied to the closure with the optional argument 'termorder'=TO where TO is of type MonomialOrder.

Examples

For the given differential operator L

(1)

compute the closure of L:

(2)

In the following example, we apply the Groebner basis computation with term ordering  to the computed differential closure.

(3)

Compute the local closure of L at p = x^2+1.  Only one of the polynomials in C satisfies .

(4)

References

  

Tsai, H. "Weyl closure of a linear differential operator." Journal of Symbolic Computation Vol. 29 No. 4-5 (2000): 747-775.

  

Chyzak, F.; Dumas, P.; Le, H.Q.; Martins, J.; Mishna, M.; Salvy, B. "Taming apparent singularities via Ore closure." In preparation.

Compatibility

• 

The DEtools[Closure] command was introduced in Maple 15.

• 

For more information on Maple 15 changes, see Updates in Maple 15.

See Also

DEtools/Desingularize

Groebner

Ore_algebra

 


Download Help Document