KelvinBer, KelvinBei
Kelvin functions ber and bei
KelvinKer, KelvinKei
Kelvin functions ker and kei
KelvinHer, KelvinHei
Kelvin functions her and hei
Calling Sequence
Parameters
Description
Examples
References
KelvinBer(v, x)
KelvinBei(v, x)
KelvinKer(v, x)
KelvinKei(v, x)
KelvinHer(v, x)
KelvinHei(v, x)
v
-
algebraic expression (the order or index)
x
algebraic expression (the argument)
The Kelvin functions (sometimes known as the Thomson functions) are defined by the following equations:
KelvinBerv,x+IKelvinBeiv,x=BesselJv,x−122+12I2
KelvinBerv,x−IKelvinBeiv,x=BesselJv,x−122−12I2
KelvinKerv,x+IKelvinKeiv,x=ⅇ−12IvπBesselKv,x122+12I2
KelvinKerv,x−IKelvinKeiv,x=ⅇ12IvπBesselKv,x122−12I2
KelvinHerv,x+IKelvinHeiv,x=HankelH1v,x−122+12I2
KelvinHerv,x−IKelvinHeiv,x=HankelH2v,x−122−12I2
The Kelvin functions are all real valued for real x and positive v.
KelvinBer0,0
1
KelvinKei1.5−I,2.6+3I
−0.08160376508−0.03651099032I
seriesKelvinHer1,x,x,3
−2πx−1+142−ln−1−Ix−ln−1+Ix−2γ+3ln2+Iln−1−Ix−Iln−1+Ix+1−ππx+Ox3
convertKelvinBeiv,x,BesselJ
I2BesselJv,−12−I2x2−BesselJv,−12+I2x2
diffKelvinHeiv,x,x
2KelvinHeiv+1,x−KelvinHerv+1,x2+vKelvinHeiv,xx
convertKelvinBerv,x,BesselJ
BesselJv,−12−I2x22+BesselJv,−12+I2x22
convertKelvinBeiv,x,Bessel
convertKelvinKerv,x,BesselK
BesselKv,12+I2x2+ⅇI2vπ2BesselKv,12−I2x22ⅇI2vπ
convertKelvinHerv,x,Hankel
HankelH1v,−12+I2x22+HankelH2v,−12−I2x22
Abramowitz, M., and Stegun, I. Handbook of Mathematical Functions, Section 9.9. Washington: National Bureau of Standards Applied Mathematics, 1964.
Erdelyi, A., ed. Higher Transcendental Functions, Section 7.2.3. New York: McGraw-Hill, 1953.
See Also
Airy
Anger
Bessel
convert/Bessel
inifcns
Struve
Download Help Document