HomomorphismSubalgebras - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


LieAlgebras[HomomorphismSubalgebras] - find the kernel or image of a Lie algebra homomorphism; find the inverse image of a subalgebra with respect to a Lie algebra homomorphism

Calling Sequences

     HomomorphismSubalgebras(, keyword)

     HomomorphismSubalgebras(,S, keyword)

Parameters

              - a transformation mapping one Lie algebra to another

     keyword   - a keyword string, one of "Kernel", "Image", "InverseImage"

     S         - a list of vectors defining a basis for a subalgebra of k

 

Description

Examples

Description

• 

Let and be Lie algebras and let be a Lie algebra homomorphism .The kernel of is the ideal of vectors ker(| The image of is the subalgebra of vectors im =  for some . If  is a subalgebra of , then the inverse image of with respect to is the subalgebra  .

• 

HomomorphismSubalgebras(, "Kernel") calculates ker  A list of independent vectors defining a basis for the kernel is returned.  If ker(then an empty list is returned.

• 

HomomorphismSubalgebras(, "Image") calculates im().  A list of independent vectors defining a basis for the image is returned. If  im(then an empty list is returned.

• 

HomomorphismSubalgebras(, S, "InverseImage") calculates . A list of independent vectors defining a basis for the inverse image is returned. If  = 0, then an empty list is returned.

• 

The command HomomorphismSubalgebras is part of the DifferentialGeometry:-LieAlgebras package.  It can be used in the form HomomorphismSubalgebras(...) only after executing the commands with(DifferentialGeometry) and with(LieAlgebras), but can always be used by executing DifferentialGeometry:-LieAlgebras:-HomomorphismSubalgebras(...).

Examples

 

Example 1.

First we initialize a pair of Lie algebras and display the multiplication tables.

Alg1 > 

Alg1   > 

Alg1 > 

(2.1)

 

We define a transformation Phi from Alg1 to Alg2 and check that it is a Lie algebra homomorphism.

Alg2 > 

(2.2)
Alg2 > 

(2.3)

 

We find the kernel of Phi.

Alg2 > 

(2.4)

 

We find the image of Phi.

Alg1 > 

(2.5)

 

We find the inverse image of the subalgebra spanned by   with respect to .

Alg2 > 

Alg2 > 

(2.6)

See Also

DifferentialGeometry

LieAlgebras

ApplyHomomorphism

MultiplicationTable

Query[Homomorphism]

Transformation

 


Download Help Document