MatrixSubalgebra - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


LieAlgebras[MatrixSubalgebra] - find the subalgebra of a Lie algebra which preserves a collection of tensors or subspaces of tensors

Calling Sequences

     MatrixSubalgebra(rho, Inv)

     MatrixSubalgebra(, M, Inv)

     MatrixSubalgebra(, Gamma, Inv)

     MatrixSubalgebra(1, Inv)

Parameters

     rho     - a representation of a Lie algebra

Inv     - a list, where each element is a tensor or a list of tensors

alg     - a name or a string, the name of an initialized Lie algebra

     M       - a list of square matrices defining a Lie algebra, with the same structure equations as

     Gamma   - a list of vector fields defining a Lie algebra, with the same structure equations as  

     alg1    - a name or a string, the name of an initialized Lie algebra which has been created by the command

 

 

Description

Examples

Description

• 

Let  be a vector space and  a linear transformation (not necessarily invertible).  Let  be a type (1,1) tensor on Then the (1,1) tensor   is defined by

 where  and *.  

If  and  are the components of and  with respect to a basis for (and dual basis for ), then  .

• 

This formula extends in the natural way to define  for any tensor One says that  is invariant if  

• 

Let g be a Lie algebra and let  be a representation of The set a is a subalgebra of g.  Likewise, if T is a subspace of tensors, then the set b for all   is also a subalgebra of g.

• 

The command  allows one to make subalgebras via this general construction.  The argument Inv  is a list where each element is a tensor or a list of  tensors. For example, if  then  calculates the subalgebra consisting of   such that  span span

• 

When a Lie algebra is created with the command SimpleLieAlgebraData, its standard matrix representation is encoded in the Lie algebra data structure for that algebra. For such algebras, the construction of subalgebras via invariant tensors can be performed without explicitly specifying a representation.

Examples

 

Example 1.

We construct the Lie algebras  and  (3)⊕(2)  as subalgebras of (5). First, here are the 5×5 skew-symmetric matrices which define

 

 

Calculate the structure equations and initialize.

(2.1)

_DG([["LieAlgebra", so5, [10, table( [ ] )]], [[[1, 2, 5], 1], [[1, 3, 6], 1], [[1, 4, 7], 1], [[1, 5, 2], -1], [[1, 6, 3], -1], [[1, 7, 4], -1], [[2, 3, 8], 1], [[2, 4, 9], 1], [[2, 5, 1], 1], [[2, 8, 3], -1], [[2, 9, 4], -1], [[3, 4, 10], 1], [[3, 6, 1], 1], [[3, 8, 2], 1], [[3, 10, 4], -1], [[4, 7, 1], 1], [[4, 9, 2], 1], [[4, 10, 3], 1], [[5, 6, 8], 1], [[5, 7, 9], 1], [[5, 8, 6], -1], [[5, 9, 7], -1], [[6, 7, 10], 1], [[6, 8, 5], 1], [[6, 10, 7], -1], [[7, 9, 5], 1], [[7, 10, 6], 1], [[8, 9, 10], 1], [[8, 10, 9], -1], [[9, 10, 8], 1]]])

(2.2)

 

Define the representation space .  We shall define the invariant tensors we need on

so5 > 

(2.3)

 

The standard inclusion of in is given as the subalgebra of matrices which fix the vectors and   .

V > 

(2.4)
V > 

(2.5)

 

Comparing with the matrices in A, we see this is precisely the subalgebra we want.

V > 

 

We can define in as the subalgebra which preserves the subspaces spanned by] and .  

 

so5 > 

(2.6)

(2.7)

 

Example 2.

The computation of Example 1 can be done with the other calling sequences.

 

1. With a representation.

so5 > 

so5 > 

(2.8)

 

2. With a Lie algebra of vector fields.

V > 

(2.9)
V > 

(2.10)

 

3. With a Lie algebra constructed using the procedure SimpleLieAlgebraData .

so5 > 

(2.11)
so5 > 

(2.12)
alg > 

(2.13)

 

Example 3.

Calculate the subalgebra of consisting of 2×2 block upper triangular matrices. First initialize the Lie algebra of all matrices. The labels 'E' and 'theta' must be unassigned names.

 

Define the representation space.

(2.14)

 

The matrices we want preserve the following subspaces of

V6 > 

(2.15)
V6 > 

(2.16)

 

We can see what matrices these correspond to in several ways.  One method is to first form a general linear combination of the vectors in .

gl6 > 

(2.17)

 

Now calculate the matrix associated to   in the standard representation.

gl6 > 

 

Example 4.

In this example we calculate the intersection These are the skew-symmetric matrices which also preserve a non-degenerate 2-form. Then we show that this intersection is isomorphic to  First we initialize the Lie algebra for  The labels 'R' and 'sigma' must be unassigned names.

gl6 > 

gl6 > 

(2.18)

 

Now define an 8-dimensional representation space and a 2-form on

so8 > 

(2.19)
V8 > 

(2.20)

 

Find the subalgebra of  which preserves this 2-form.

V8 > 

(2.21)

 

Here are the explicit matrices.

so8 > 

 

Check that the matrices belong to

so8 > 

(2.22)

 

Check that the matrices belong to .

so8 > 

(2.23)

 

The isomorphism to  is given by   =  where  are 4×4 matrices.  We use the command SubMatrix  to construct this map.

so8 > 

(2.24)
so8 > 

 

Check that each of these matrices belong to .

so8 > 

(2.25)

 

Finally, we see that the structure equations for these two matrix algebras are identical.

so8 > 

(2.26)
so8 > 

(2.27)

 

 

Example 5.

The compact real form of the exceptional Lie algebra as the subalgebra of can be computed using the command MatrixAlgebras. First we initialize the Lie algebra  

so7 > 

gl6 > 

(2.28)
gl6 > 

(2.29)

 

Now define a7-dimensional representation space and a 3-form on

so8 > 

(2.30)
V7 > 

(2.31)
V7 > 

(2.32)
V7 > 

(2.33)
so8 > 

(2.34)

 

Calculate the subalgebra of   which leaves the 3-form invariant.

V8 > 

(2.35)

 

Here are the explicit matrices.

so8 > 

 

The Lie algebra defined by either the vectors or the matrices   is a 14-dimensional Lie algebra with negative-definite Killing form and 2-dimensional Cartan subalgebra.

so7 > 

(2.36)
so7 > 

(2.37)
g2 > 

(2.38)

 

Example 6.

The split real form of the exceptional Lie algebra as the subalgebra of (4, 3)  is similarly computed.

so7 > 

(2.39)
gl6 > 

gl6 > 

(2.40)

 

Now define a 7-dimensional representation space and a 3-form on

so8 > 

(2.41)
V7 > 

(2.42)
V7 > 

(2.43)
V7 > 

(2.44)
so8 > 

(2.45)

 

Calculate the subalgebra of  which  leaves the 3-form invariant.

V8 > 

(2.46)

 

Here are the explicit matrices.

so8 > 

 

The Lie algebra defined by either the vectors or the matrices   is a 14-dimensional Lie algebra.

V7 > 

(2.47)
so7 > 

(2.48)
g2S > 

(2.49)
g2S > 

(2.50)
g2S > 

(2.51)

See Also

DifferentialGeometry

CartanSubalgebra

Killing

Query[MatrixAlgebra]

Representation

SimpleLieAlgebraData

StandardRepresentation

 


Download Help Document