TensorBrackets - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Tensor[TensorBrackets] - calculate the Schouten bracket and Frolicher-Nijenhuis brackets of tensor fields

Calling Sequences

     TensorBrackets( R, S, C, keyword)

Parameters

   R, S      - type and type contravariant tensor fields on a manifold

   R, S      - type   and type tensor fields on a manifold , skew-symmetric in their covariant indices

   C         - (optional) a symmetric connection on TM

   keyword   - a string, either "Schouten" or "Frolicher-Nijenhuis"

 

Description

Examples

Description

• 

Let  and  be type  and type  contravariant tensor fields on a manifold , respectively. The Schouten bracket  is a contravariant tensor field of type  which generalizes the Lie bracket of two vector fields. The Schouten bracket enjoys the following properties:

1. .

2. If  and  are symmetric, then  is symmetric. If  and  are skew-symmetric, then  is skew-symmetric.

3. If we denote the totally symmetric and totally skew-symmetric parts of a contravariant tensor  by and , then .

4. If  is a type  tensor field and  is either symmetric or skew-symmetric, then , where  is the Lie derivative along .

5. If  and  are symmetric and  is a vector field, then , where ⊙ is the symmetric tensor product.

6. If  and  are skew-symmetric and  is a vector field, then .

7. For the explicit coordinate formula for the Schouten bracket and other properties, see A. Nijenhuis, Jacobi-type identities for bilinear differential concomitants of certain tensor fields I.

8. A type  skew-symmetric tensor field  on a manifold  defines a Poisson structure if .

• 

Let and  be type  and type  tensor fields on a manifold , each of which is skew-symmetric in its covariant indices. Such tensors are often referred to as vector-valued differential forms (of degrees  and ). The Frolicher-Nijenhuis bracket  is a vector-valued differential-form of degree . The Frolicher-Nijenhuis bracket enjoys the following properties:

1. .

2. If , then . 

3. If  and  are vector fields and  and  are differential forms of degrees  and , then

where  is the interior product of  and .

4. For the explicit coordinate formula for Frolicher-Nijenhuis bracket, see A. Nijenhuis, Jacobi-type identities for bilinear differential concomitants of certain tensor fields II.

5. If  is a  tensor field, then the Frolicher-Nijenhuis bracket  is called the torsion of .

• 

This command is part of the DifferentialGeometry:-Tensor package, and so can be used in the form TensorBrackets(...) only after executing the command with(DifferentialGeometry) and with(Tensor) in that order. It can always be used in the long form DifferentialGeometry:-Tensor:-TensorBrackets.

Examples

with(DifferentialGeometry):with(Tensor):

DGsetup([x, y, z, w], M):

 

Example 1.

Compute the Schouten brackets of the tensors  and  and check that the result coincides with the Lie derivative .

 

M > 

X := evalDG(x*D_y - z*D_w);

(2.1)
M > 

T1 := convert(X, DGtensor);

(2.2)
M > 

T2 := evalDG(w*D_x &s D_y + y*D_z &s D_w);

(2.3)
M > 

TensorBrackets(T1, T2, "Schouten");

(2.4)
M > 

LieDerivative(X, T2);

(2.5)

 

Example 2.

Find all functions  such that the skew-symmetric tensor  satisfies

M > 

W0 := evalDG(D_x &w D_y + z*D_y &w D_z + f(x, y, z, w)*D_z &w D_w);

(2.6)
M > 

W := convert(W0, DGtensor);

(2.7)
M > 

S := TensorBrackets(W, W, "Schouten"):

M > 

pde:=Tools:-DGinfo(S, "CoefficientSet");

(2.8)
M > 

pdsolve(pde);

(2.9)

 

Example 3.

Check, by way of an example, that the Schouten bracket, acting on symmetric tensors, satisfies the Jacobi identity.

M > 

T3 := evalDG(y^2*D_x &s D_y + x*z *D_y &s D_w);

(2.10)
M > 

T4 := evalDG(D_y &s D_w);

(2.11)
M > 

T5 := evalDG(x*z*w* &s (D_y, D_y, D_z));

(2.12)
M > 

F :=(X, Y, Z) -> TensorBrackets(X, TensorBrackets(Y, Z, "Schouten"), "Schouten");

(2.13)
M > 

F(T3, T4, T5) &plus F(T5, T3, T4) &plus F(T4, T5, T3);

(2.14)

 

Example 4.

Compute the Frolicher-Nijenhuis of the tensors  and  and check that the result coincides with the Lie derivative .

Also check that  and that .

M > 

X := evalDG(z*D_y + x*D_w);

(2.15)
M > 

T6 := convert(X, DGtensor);

(2.16)
M > 

T7 := evalDG(w^2* D_x &t (dx &w dy &w dw) + y^2* D_y &t(dx &w dz &w dw));

(2.17)
M > 

S1 := TensorBrackets(T6, T7, "Frolicher-Nijenhuis");

(2.18)
M > 

S1 &minus LieDerivative(X, T7);

(2.19)
M > 

S1 &plus TensorBrackets(T7, T6, "Frolicher-Nijenhuis");

(2.20)

 

Example 5.

Show that

M > 

T8 := evalDG(w^2* z*D_x &t (dx &w dy) + y^2*x *D_y &t(dx &w dz));

(2.21)
M > 

TensorBrackets(T8, T8, "Frolicher-Nijenhuis");

(2.22)

 

Example 6.

Use the tensors  and  to show that Frolicher-Nijenhuis is independent of the connection used to calculate it.

M > 

T9 := evalDG(w^2* z^2*D_x &t (dy &w dw) + y^2*x^2* D_y &t(dx &w dw));

(2.23)
M > 

C := Connection(SymmetrizeIndices(z^2*D_y &t dx &t dz + x*y*D_y &t dx &t dy, [2, 3], "Symmetric"));

(2.24)
M > 

TensorBrackets(T8, T9, "Frolicher-Nijenhuis") &minus TensorBrackets(T8, T9, C, "Frolicher-Nijenhuis");

(2.25)

 

Example 7.

Find all functions  such that the  tensor  satisfies  

M > 

T10 := evalDG(D_x &t dy + z*D_y &t dz +f(x, y, z, w)*D_z &t dw);

(2.26)
M > 

PDEtools[declare](f(x, y, z, w));

(2.27)
M > 

S2 := TensorBrackets(T10, T10, "Frolicher-Nijenhuis");

(2.28)
M > 

pde := Tools:-DGinfo(S2, "CoefficientSet");

(2.29)
M > 

pdsolve(pde);

(2.30)

See Also

DifferentialGeometry

Tensor

Connection

DGinfo

LieDerivative

SymmetrizeIndices

 


Download Help Document