DEtools
PolynomialNormalForm
construct the differential polynomial normal form of a rational function
Calling Sequence
Parameters
Description
Examples
References
PolynomialNormalForm(F, x)
F
-
rational function of x
x
variable
Let F be a rational function of x over a field K of characteristic 0. The PolynomialNormalForm(F,x) command constructs the differential polynomial normal form for F.
The output is a sequence of 3 elements a,b,c where a,b,c are polynomials over K such that:
F=ab+ⅆⅆxcc.
gcdb,a−iⅆbⅆx=1 for all non-negative integers i.
gcdb,c=1.
withDEtools:
F≔4x−2+4x+1−3x+12−9x−12−9x2+12x3+4x−2+1x3+4x−22
a,b,c≔PolynomialNormalFormF,x
a,b,c≔−5x9−16x8−14x7−134x6+39x5−331x4+96x3+32x2+16x−7,x+12x−12x3+4x−22,x−24
Check the result:
nF≔ab+diffc,xc:
TestzeronormalF−nF
true
res≔resultantb,a−jdiffb,x,x:
H≔selecttype,solveres,j,nonnegint:
evalbH=∅andgcdb,c=1
Almkvist, G, and Zeilberger, D. "The method of differentiating under the integral sign." Journal of Symbolic Computation. Vol. 10. (1990): 571-591.
See Also
DEtools[Gosper]
DEtools[RationalCanonicalForm]
SumTools[Hypergeometric][PolynomialNormalForm]
Download Help Document