FunctionAdvisor/known_functions
return a list of the mathematical function's names known by FunctionAdvisor
Calling Sequence
Parameters
Description
Examples
FunctionAdvisor(known_functions)
known_functions
-
literal name; 'known_functions'
The FunctionAdvisor(known_functions) command returns a list of the mathematical function's names implemented in the Maple system.
FunctionAdvisorknown_functions
The functions on which information is available via > FunctionAdvisor( function_name ); are:
AiryAi,AiryBi,AngerJ,AppellF1,AppellF2,AppellF3,AppellF4,BellB,BesselI,BesselJ,BesselK,BesselY,Β,ChebyshevT,ChebyshevU,Chi,Ci,CoulombF,CylinderD,CylinderU,CylinderV,Dirac,Ei,EllipticCE,EllipticCK,EllipticCPi,EllipticE,EllipticF,EllipticK,EllipticModulus,EllipticNome,EllipticPi,FresnelC,FresnelS,Fresnelf,Fresnelg,Γ,GaussAGM,GegenbauerC,GeneralizedPolylog,HankelH1,HankelH2,Heaviside,HermiteH,HeunB,HeunBPrime,HeunC,HeunCPrime,HeunD,HeunDPrime,HeunG,HeunGPrime,HeunT,HeunTPrime,Hypergeom,ℑ,InverseJacobiAM,InverseJacobiCD,InverseJacobiCN,InverseJacobiCS,InverseJacobiDC,InverseJacobiDN,InverseJacobiDS,InverseJacobiNC,InverseJacobiND,InverseJacobiNS,InverseJacobiSC,InverseJacobiSD,InverseJacobiSN,JacobiAM,JacobiCD,JacobiCN,JacobiCS,JacobiDC,JacobiDN,JacobiDS,JacobiNC,JacobiND,JacobiNS,JacobiP,JacobiSC,JacobiSD,JacobiSN,JacobiTheta1,JacobiTheta2,JacobiTheta3,JacobiTheta4,JacobiZeta,KelvinBei,KelvinBer,KelvinHei,KelvinHer,KelvinKei,KelvinKer,KummerM,KummerU,LaguerreL,LambertW,LegendreP,LegendreQ,LerchPhi,Li,LommelS1,LommelS2,MathieuA,MathieuB,MathieuC,MathieuCE,MathieuCEPrime,MathieuCPrime,MathieuExponent,MathieuFloquet,MathieuFloquetPrime,MathieuS,MathieuSE,MathieuSEPrime,MathieuSPrime,MeijerG,MultiPolylog,NielsenPolylog,Ψ,ℜ,Shi,Si,SphericalY,Ssi,Stirling1,Stirling2,StruveH,StruveL,WeberE,WeierstrassP,WeierstrassPPrime,WeierstrassSigma,WeierstrassZeta,WhittakerM,WhittakerW,Wrightomega,Ζ,abs,arccos,arccosh,arccot,arccoth,arccsc,arccsch,arcsec,arcsech,arcsin,arcsinh,arctan,arctanh,argument,bernoulli,binomial,conjugate,cos,cosh,cot,coth,csc,csch,csgn,dawson,dilog,doublefactorial,erf,erfc,erfi,euler,exp,factorial,harmonic,hypergeom,ln,lnGAMMA,log,max,min,piecewise,pochhammer,polylog,sec,sech,signum,sin,sinh,tan,tanh,unwindK
You can get a table of information for each function by specifying the function and the table keyword.
info_arccot≔FunctionAdvisortable,arccot
arccot belongs to the subclass "arctrig" of the class "elementary" and so, in principle, it can be related to various of the 26 functions of those classes - see FunctionAdvisor( "arctrig" ); and FunctionAdvisor( "elementary" );
info_arccot≔tablesingularities=arccotz,z=∞+∞I,describe=arccot=inverse cotangent function,differentiation_rule=ⅆⅆzarccotz=−1z2+1,ⅆnⅆznarccotz=arccotzn=0−2n−1MeijerG0,0,12,,0,−12+n2,n2,z2z1−notherwise,special_values=arccot−1=3π4,arccot−33=2π3,arccot−3=5π6,arccot0=π2,arccot3=π6,arccot33=π3,arccot1=π4,arccot∞=0,arccot−∞=π,DE=fz=arccotz,ⅆⅆzfz=−1z2+1,definition=arccotz=π2−Iln1−Iz−ln1+Iz2,with no restrictions on z,series=seriesarccotz,z,4=π2−z+13z3+Oz5,branch_points=arccotz,z∈−I,I,classify_function=arctrig,elementary,calling_sequence=arccotz,branch_cuts=arccotz,z∈ComplexRange−∞I,−I∨z∈ComplexRangeI,∞I,symmetries=arccot−z=π−arccotz,arccotz&conjugate0;=arccotz&conjugate0;,notz∈ComplexRange−∞I,−Iorz∈ComplexRangeI,∞I,identities=cotarccotz=z,cotarccotz+arccoty=yz−1z+y,asymptotic_expansion=asymptarccotz,z,4=1z−13z3+O1z5,sum_form=arccotz=∑_k1=0∞−zIz_k1+−Iz_k12_k1+1+π2,∧z<1,integral_form=arccotz=∫1+Iz1−Iz−I2_k1ⅆ_k1+π2,with no restrictions on z,periodicity=arccotz,No periodicity
info_arccotdescribe
arccot=inverse cotangent function
info_arccotdefinition
arccotz=π2−Iln1−Iz−ln1+Iz2,with no restrictions on z
See Also
FunctionAdvisor
FunctionAdvisor/function_classes
FunctionAdvisor/topics
Download Help Document