solvefor
solve for one or more of the variables found in a set of equations
Calling Sequence
Parameters
Description
Examples
solvefor(eqn_1, eqn_2, ... )
solvefor[varseq](eqnset)
eqn_1, eqn_2, ...
-
equation or a set of equations to be solved collectively
varseq
expression sequence of variables to be placed on the left-side of the equations forming a solution
eqnset
expression sequence; one or more equations to be solved collectively
Important: The solvefor command has been deprecated. Use the superseding command solve instead.
The solvefor command isolates specified variables (if any) from a set of equations on the left-hand side of a reduced set of equations. If no variables are specified it is essentially equivalent to a call to solve. Answer are returned in a form suitable for use in other commands such as subs and eval.
The original set of equations is formed by collecting the arguments to solvefor into a set of equations. The solve command is applied to the resulting system to produce 0 or more solutions.
If no solution is found this is indicated by an empty list. If more than one solution is found then they are returned as a list of solutions.
Each solution is returned as an equation, or (if more than one equation is involved) as a set of equations in which the variables on the left-hand side do not appear on the right hand side.
Variables may be specified as an index to the procedure name, as in solvefor[x](...). This indicates that the solutions must include the indicated variables on the left-hand side of the solution equations.
solvefor⁡x3−y2⁢x+x⁢y=3,x2+y2=1
Warning, solvefor is deprecated. Please use solve command.
x=RootOf⁡4⁢_Z6−3⁢_Z4−12⁢_Z3+6⁢_Z+9,index=1,y=−4⁢RootOf⁡4⁢_Z6−3⁢_Z4−12⁢_Z3+6⁢_Z+9,index=153+RootOf⁡4⁢_Z6−3⁢_Z4−12⁢_Z3+6⁢_Z+9,index=13+2⁢RootOf⁡4⁢_Z6−3⁢_Z4−12⁢_Z3+6⁢_Z+9,index=12−1,x=RootOf⁡4⁢_Z6−3⁢_Z4−12⁢_Z3+6⁢_Z+9,index=2,y=−4⁢RootOf⁡4⁢_Z6−3⁢_Z4−12⁢_Z3+6⁢_Z+9,index=253+RootOf⁡4⁢_Z6−3⁢_Z4−12⁢_Z3+6⁢_Z+9,index=23+2⁢RootOf⁡4⁢_Z6−3⁢_Z4−12⁢_Z3+6⁢_Z+9,index=22−1,x=RootOf⁡4⁢_Z6−3⁢_Z4−12⁢_Z3+6⁢_Z+9,index=3,y=−4⁢RootOf⁡4⁢_Z6−3⁢_Z4−12⁢_Z3+6⁢_Z+9,index=353+RootOf⁡4⁢_Z6−3⁢_Z4−12⁢_Z3+6⁢_Z+9,index=33+2⁢RootOf⁡4⁢_Z6−3⁢_Z4−12⁢_Z3+6⁢_Z+9,index=32−1,x=RootOf⁡4⁢_Z6−3⁢_Z4−12⁢_Z3+6⁢_Z+9,index=4,y=−4⁢RootOf⁡4⁢_Z6−3⁢_Z4−12⁢_Z3+6⁢_Z+9,index=453+RootOf⁡4⁢_Z6−3⁢_Z4−12⁢_Z3+6⁢_Z+9,index=43+2⁢RootOf⁡4⁢_Z6−3⁢_Z4−12⁢_Z3+6⁢_Z+9,index=42−1,x=RootOf⁡4⁢_Z6−3⁢_Z4−12⁢_Z3+6⁢_Z+9,index=5,y=−4⁢RootOf⁡4⁢_Z6−3⁢_Z4−12⁢_Z3+6⁢_Z+9,index=553+RootOf⁡4⁢_Z6−3⁢_Z4−12⁢_Z3+6⁢_Z+9,index=53+2⁢RootOf⁡4⁢_Z6−3⁢_Z4−12⁢_Z3+6⁢_Z+9,index=52−1,x=RootOf⁡4⁢_Z6−3⁢_Z4−12⁢_Z3+6⁢_Z+9,index=6,y=−4⁢RootOf⁡4⁢_Z6−3⁢_Z4−12⁢_Z3+6⁢_Z+9,index=653+RootOf⁡4⁢_Z6−3⁢_Z4−12⁢_Z3+6⁢_Z+9,index=63+2⁢RootOf⁡4⁢_Z6−3⁢_Z4−12⁢_Z3+6⁢_Z+9,index=62−1
solvefort⁡x+y=1,x−y+z⁢t=3
t=−2⁢x−2z,y=1−x
solvefory⁡x+y=1,x−y+z⁢t=3
x=−z⁢t2+2,y=z⁢t2−1
solveforz⁡x+y=1,x−y+z⁢t=3
y=1−x,z=−2⁢x−2t
See Also
eliminate
resultant
solve
Download Help Document