Because the triple integral over can be iterated in Cartesian coordinates in the order , the task template in Table 8.2.1(a), implementing the FunctionAverage command from the Student MultivariateCalculus package, can be used.
Tools≻Tasks≻Browse:
Calculus - Multivariate≻Integration≻Average Value≻Cartesian 3-D
|
Average Value of a Function:
|
Function
|
|
Region:
|
|
|
|
|
|
|
|
|
|
|
|
|
Inert integral:
|
>
|
|
| (8) |
|
Value
|
>
|
|
|
|
|
|
Table 8.2.1(a) Solution by task template implementing the FunctionAverage command
|
|
|
To implement a solution from first principles, evaluate the integral of over and divide by the volume computed in Example 8.1.1. To integrate over , use the visualization task template in Table 8.2.1(b).
Tools≻Tasks≻Browse:
Calculus - Multivariate≻Integration≻Visualizing Regions of Integration≻Cartesian 3-D
|
Evaluate and Graph
|
Volume Element
|
, where
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Table 8.2.1(b) Integration of over by visualization task template
|
|
|
Table 8.2.1(c) completes the solution from first principles.
•
|
Copy and paste the value of
|
•
|
Context Panel: Evaluate and Display Inline
|
|
=
|
Table 8.2.1(c) Completion of the solution from first principles
|
|
|