Inverse - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


RegularChains

  

Inverse

  

inverse of a polynomial with respect to a regular chain

 

Calling Sequence

Parameters

Description

Examples

Calling Sequence

Inverse(p, rc, R)

Inverse(p, rc, R, 'normalized'='yes')

Parameters

R

-

polynomial ring

rc

-

regular chain of R

p

-

polynomial of R

'normalized'='yes'

-

boolean flag (optional)

Description

• 

The function call Inverse(p, rc, R) returns a list . The list   consists of pairs  such that  equals  modulo the saturated ideal of , where  is regular with respect to . The list  is a list of regular chains  such that p is a zero-divisor modulo . In addition, the set of all regular chains occurring in  and  is a triangular decomposition of rc. To be precise, they form a decomposition of rc in the sense of Kalkbrener.

• 

If  is passed, then the regular chain rc must be normalized. In addition, all the returned regular chains will be normalized.

• 

If the regular chain rc is normalized but  is not passed, then there is no guarantee that the returned regular chains will be normalized.

• 

For zero-dimensional regular chains in prime characteristic, the commands RegularizeDim0 and NormalizePolynomialDim0 can be combined to obtain the same specification as the command Inverse  while gaining the advantages of  modular techniques and asymptotically fast polynomial arithmetic.

• 

This command is part of the RegularChains package, so it can be used in the form Inverse(..) only after executing the command with(RegularChains). However, it can always be accessed through the long form of the command by using RegularChains[Inverse](..).

Examples

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

See Also

Chain

ChainTools

Empty

Equations

IsRegular

IsStronglyNormalized

MatrixInverse

NormalForm

NormalizePolynomialDim0

PolynomialRing

RegularChains

RegularizeDim0

 


Download Help Document