GroupTheory
LeftCoset
construct the left coset of a subgroup
RightCoset
construct the right coset of a subgroup
Calling Sequence
Parameters
Description
Examples
Compatibility
LeftCoset( g, H )
RightCoset( H, g )
g
-
an element of some group containing H
H
a subgroup of a permutation group
Let H be a subgroup of a group G, and let g be a member of G. The left coset gH is defined to be the subset gh:h∈H of G. Similarly, the right coset Hg is the subset hg:h∈H of G.
The LeftCoset( g, H ) command returns a data structure representing the left coset gH of a subgroup H of a permutation group G. The RightCoset( H, g ) command returns a data structure representing the right coset Hg of a subgroup H of a permutation group G.
The data structures representing (left or right) cosets respond to the following methods.
Representative( c )
returns the representative of the coset c
numelems( c )
returns the number of members of the coset c
member( x, c ) or x in c
returns true if x belongs to the coset c
Elements( c )
returns the elements of the coset c, as a set
Subgroup( c )
returns the subgroup of the coset c
withGroupTheory:
G≔Alt4
G≔A4
H≔SubgroupPerm1,2,3,4,G
H≔1,23,4
C≔RightCosetH,Perm1,2,3
C≔1,23,4·1,2,3
GroupOrderH
2
numelemsC
ElementsC
1,3,4,1,2,3
RepresentativeC
1,2,3
evalbPerm1,3,2inC
false
The symmetric group on 3 letters as a Cayley table group.
M≔1|2|3|4|5|6,2|1|6|5|4|3,3|5|1|6|2|4,4|6|5|1|3|2,5|3|4|2|6|1,6|4|2|3|1|5
M≔123456216543351624465132534261642315
G≔CayleyTableGroupM
G≔ < a Cayley table group with 6 elements >
2 is an involution.
H≔Subgroup2,G
H≔ < a Cayley table group with 1 generator >
RC≔RightCosetH,3
RC≔ < a Cayley table group with 1 generator > ·3
numelemsH=numelemsRC
2=2
ElementsRC
3,6
LC≔LeftCoset3,H
LC≔3· < a Cayley table group with 2 elements >
numelemsH=numelemsLC
ElementsLC
3,5
The GroupTheory[LeftCoset] and GroupTheory[RightCoset] commands were introduced in Maple 17.
For more information on Maple 17 changes, see Updates in Maple 17.
See Also
GroupTheory[Cosets]
Download Help Document