parametrization - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


algcurves

  

parametrization

  

find a parametrization for a curve with genus 0

 

Calling Sequence

Parameters

Description

Examples

Calling Sequence

parametrization(f, x, y, t)

Parameters

f

-

irreducible polynomial in x and y, with genus 0

x, y, t

-

variables

Description

• 

This procedure computes, if it exists, a parametrization of an algebraic curve f. A parametrization is a birational equivalence from a projective line to the given curve f. Such a parametrization exists if and only if the genus is 0 and the curve is irreducible (which can be checked by AIrreduc).

• 

The output of the procedure is a list Xt,Yt of rational functions in t, such that Xt,Yt is a point on the curve f for every value of t.

• 

For a description of the method used see M. van Hoeij, "Rational Parametrizations of Algebraic Curves using a Canonical Divisor", 23, p. 209-227, JSC 1997.

Examples

withalgcurves:

fy5+2xy2+2xy3+x2y4x3y+2x5:

vparametrizationf,x,y,t

v646272t5+132192t4+6120t3238t217t5430596t5103680t417280t31440t260t1,2594064t598260t4+9826t35430596t5103680t417280t31440t260t1

(1)

Now subs(t=any number,v) should be a point on the curve. Test the result (this should be 0):

normalsubsx=v1,y=v2,f

0

(2)

parametrizationx4+y4+ax2y2+by3,x,y,t

bt3t4+at2+1,t4bt4+at2+1

(3)

See Also

AFactor

algcurves[genus]

algcurves[Weierstrassform]

 


Download Help Document