Physics for Maple 2016 - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : Physics : Updates : Physics for Maple 2016

Physics

Maple provides a state-of-the-art environment for algebraic computations in Physics, with emphasis on ensuring that the computational experience is as natural as possible. The theme of the Physics project for Maple 2016 has been the consolidation of the new functionality introduced during the last three releases, through more than 300 enhancements across the board, together with signification enhancements and new functionality in General Relativity. Most notably, for the 100th anniversary of the presentation of the theory of relativity, in Maple 2016 we are bringing to completion the digitalization of the solutions to Einstein's equations collected, from more than 4000 papers, in the classic book "Exact Solutions to Einstein's Equations" by H. Stephani - et al.

In addition, Maple 2016 implements new general functionality that is relevant within and beyond Physics, including a new Factor command with the ability to perform factorization in expressions involving products of noncommutative operators and the ability to compute with differential operators algebraically, that is, operating with them using multiplication to express application. Combining these two developments, it is now possible to factorize algebraic expressions involving differential operators and so, for example, solve partial differential equations through factorization.

Taking all together, the more than 350 enhancements throughout the entire package increased robustness, versatility and functionality, extending again the range of Physics-related algebraic computations that can be done using computer algebra software and in a natural way.


As part of its commitment to providing the best possible environment for algebraic computations in Physics, Maplesoft launched a Maple Physics: Research and Development web site with Maple 18, which enabled users to download research versions, ask questions, and provide feedback. The results from this accelerated exchange with people around the world have been incorporated into the Physics package in Maple 2016.

 

 

Completion of the Database of Solutions to Einstein's Equations

Operatorial Algebraic Expressions Involving the Differential Operators μ, 𝒟μ and  (nabla)

Factorization of Expressions Involving Noncommutative Operators

Tensors in Special and General Relativity

Vectors Package

The Physics Library

Redesigned Functionality and Miscellaneous

Completion of the Database of Solutions to Einstein's Equations

A database of solutions to Einstein's equations was added to the Maple library in Maple 15 with a selection of metrics from "Stephani, H.; Kramer, D.; MacCallum, M.; Hoenselaers, C.; and Herlt, E.,  Exact Solutions to Einstein's Field Equations". More metrics from this book were added for Maple 16, Maple 17, and Maple 18, up to 225 metrics. In Maple 2016, for the 100th anniversary of the presentation of the theory of Relativity by A. Einstein, we brought to completion the digitalization of all the 971 metric solutions collected from more than 4000 papers presented in the General Relativity literature. All these metrics can be loaded or searched using g_ (the Physics command representing the spacetime metric that also sets the metric to your choice in one go) or using the command DifferentialGeometry:-Library:-MetricSearch. When a metric is loaded, all the General Relativity tensors (Christoffel, Ricci, Einstein, and Riemann) are automatically computed on background and available for further computations. These metrics can also be changed in various ways and, automatically, all the General Relativity tensors are recomputed on background. You can work with these metrics, the ones in the database or any other one you set, using the Tetrads formalism too, with the commands of the Physics:-Tetrads package.

In the Maple PDEtools package, you have the mathematical tools - including a complete symmetry approach - to work with the underlying partial differential equations. By combining the functionality of the Physics:-Tetrads package, the Physics:-TransformCoordinates command, and the ability to compute Riemann and Weyl invariants, you can also formulate and, depending on the the metrics also resolve, the equivalence problem; that is: to answer whether or not, given two metrics, they can be obtained from each other by a transformation of coordinates, as well as compute the transformation.

Examples

Load Physics, set the metric to Schwarzschild (and everything else automatically) in one go

restart; withPhysics:

g_sc

Systems of spacetime Coordinates are: X=r,θ,φ,t

Default differentiation variables for d_, D_ and dAlembertian are: X=r,θ,φ,t

The Schwarzschild metric in coordinates r,θ,φ,t

Parameters: m

That is all you need to do: although the strength in Physics is to compute with tensors using indicial notation, by setting the metric as in  all of the tensor components of the General Relativity tensors are also derived on the fly and ready for use. For instance these are the definition in terms of Christoffel symbols, and the covariant components of the Ricci tensor for Schwarzschild solution

Riccidefinition

Rμ,ν=αΓαμ,ναμ,ννΓαμ,ααμ,α+Γβμ,νβμ,νΓαβ,ααβ,αΓβμ,αβμ,αΓαν,βαν,β

(1)

Ricci

Rμ,ν=0000000000000000

(2)

These are the 16 Riemann invariants for Schwarzschild solution, using the formulas by Carminati and McLenaghan

Riemanninvariants

r0=0,r1=0,r2=0,r3=0,w1=6m2r6,w2=6m3r9,m1=0,m2=0,m3=0,m4=0,m5=0

(3)

The related Weyl scalars in the context of the Newman-Penrose formalism; the definition is in terms of the Weyl tensor and the tetrad of tensors lμ,nμ,mμ,m&conjugate0;μ of the Newman-Penrose formalism

Weylscalarsdefinition

ψ__0=Cμ,ν,α,βμ,ν,α,βlμmνlαmβ,ψ__1=Cμ,ν,α,βμ,ν,α,βlμnνlαmβ,ψ__2=Cμ,ν,α,βμ,ν,α,βlμmνm&conjugate0;αnβ,ψ__3=Cμ,ν,α,βμ,ν,α,βlμnνm&conjugate0;αnβ,ψ__4=Cμ,ν,α,βμ,ν,α,βnμm&conjugate0;νnαm&conjugate0;β

(4)

Weylscalars

ψ__0=0,ψ__1=0,ψ__2=mr3,ψ__3=0,ψ__4=0

(5)

 

These are the matrix components of the Christoffel symbols of the second kind (that describe, in coordinates, the effects of parallel transport in curved surfaces), when the first of its three indices is equal to 1; contravariant indices are prefixed by ~

Christoffel~1,alpha,beta,matrix

Γ1α,β1α,β=mrr+2m0000r+2m0000r+2msinθ200002m2+mrr3

(6)

In Physics, the Christoffel symbols of the first kind are represented by the same object (one command, Christoffel, not two) just by taking the first index covariant, as we do when computing with paper and pencil

Christoffel1,alpha,beta,matrix

Γ1,α,β=mr+2m20000r0000rsinθ20000mr2

(7)

One could query the database, directly from the spacetime metrics, for example about the solutions (metrics) to Einstein's equations related to Levi-Civita, the Italian mathematician

g_civi

____________________________________________________________

12,16,1=Authors=Bertotti (1959),Kramer (1978),Levi-Civita (1917),Robinson (1959),PrimaryDescription=EinsteinMaxwell,SecondaryDescription=Homogeneous

____________________________________________________________

12,18,1=Authors=Bertotti (1959),Kramer (1978),Levi-Civita (1917),Robinson (1959),PrimaryDescription=EinsteinMaxwell,SecondaryDescription=Homogeneous

____________________________________________________________

12,19,1=Authors=Bertotti (1959),Kramer (1978),Levi-Civita (1917),Robinson (1959),PrimaryDescription=EinsteinMaxwell,SecondaryDescription=Homogeneous,Comments=_lambda=_zeta

____________________________________________________________

22,7,1=Authors=Levi-Civita (1917), Frehland (1971),PrimaryDescription=Vacuum,SecondaryDescription=Cylindrically-Symmetric,Comments=Locally static, Weyl class_m=0,1 - flat, _m=1/2, 2, -1 - PetrovType D

(8)

Each triad of numbers indicates the chapter and equation number with which each of these metrics appear in "Exact Solutions to Einstein's Field Equations". For example, [12, 16, 1] is the metric found in Chapter 12 with equation number 16.1. These solutions can be set in one go from the metrics command, just by indicating the triad of numbers as follows

g_12,16,1

Systems of spacetime Coordinates are: X=t,x,θ,φ

Default differentiation variables for d_, D_ and dAlembertian are: X=t,x,θ,φ

The Bertotti (1959), Kramer (1978), Levi-Civita (1917), Robinson (1959) metric in coordinates t,x,θ,φ

Parameters: k,κ0,β

Resetting the signature of spacetime from "- - - +" to `- + + +` in order to match the signature in the database of metrics:

Automatically, everything gets set accordingly; these are the contravariant components of the related Ricci tensor

Ricci~

Rμ,νμ,ν=1k4sinhx200001k400001k400001k4sinθ2

(9)

One works with the Newman-Penrose formalism frequently using tetrads (local system of references); the Physics subpackage for this is Tetrads

withTetrads

Setting lowercaselatin letters to represent tetrad indices

Defined as tetrad tensors see ?Physics,tetrads,𝔢a,μ,ηa,b,γa,b,c,λa,b,c

Defined as spacetime tensors representing the NP null vectors of the tetrad formalism see ?Physics,tetrads,lμ,nμ,mμ,m&conjugate0;μ

IsTetrad,NullTetrad,OrthonormalTetrad,PetrovType,SegreType,TransformTetrad,e_,eta_,gamma_,l_,lambda_,m_,mb_,n_

(10)

To query about the definition of any of these tensors, of the Tetrads or Physics packages, index them with the keyword definition

l_definition

lμlμμ=0,lμnμμ=−1,lμmμμ=0,lμm&conjugate0;μμ=0,gμ,ν=lμnνlνnμ+mμm&conjugate0;ν+mνm&conjugate0;μ

(11)

gamma_definition

γa,b,c=𝒟ν𝔢a,μ𝔢bμbμ𝔢cνcν

(12)

This is the orthonormal tetrad 𝔢a,μ related to the metric set in  set by the package (you can change these tetrads in different ways using the TransformTetrad command)

e_

𝔢a,μ=sinhxk0000k0000k0000sinθk

(13)

You can check these components directly using the definition. In this case, the right-hand side is the (orthonormal) tetrad metric

e_definition

𝔢a,μ𝔢bμbμ=ηa,b

(14)

eta_

This shows that, for the tetrad components given by (13), the definition (14) holds

TensorArray

−1=−10=00=00=00=01=10=00=00=00=01=10=00=00=00=01=1

(15)

One frequently works with a different signature and null tetrads; set that, and everything related automatically

Setuptetradmetric = null

tetradmetric=1,2=−1,3,4=1

(16)

eta_

e_

𝔢a,μ=2sinhxk22k2002sinhxk22k200002k2I22sinθk002k2I22sinθk

(17)

Verifying (17) using the definition (14)

TensorArray

0=0−1=−10=00=0−1=−10=00=00=00=00=00=01=10=00=01=10=0

(18)

You can also change the signature and everything gets automatically recomputed as well, from the components of the tensors to the definition of Weyl scalars. You can query the value of the signature using Setup

Setupsignature

signature=- + + +

(19)

Set the signature to be + - - - , compare the components of the null tetrad metric with the components of  and verify the tetrad 𝔢a,μ

Setupsignature = `+---`

signature=+ - - -

(20)

eta_

e_

𝔢a,μ=I22sinhxkI22k00I22sinhxkI22k0000I22k2sinθk200I22k2sinθk2

(21)

TensorArray

0=01=10=00=01=10=00=00=00=00=00=0−1=−10=00=0−1=−10=0

(22)

The related 16 Riemann invariants

Riemanninvariants

r0=0,r1=1k4,r2=0,r3=14k8,w1=0,w2=0,m1=0,m2=0,m3=0,m4=0,m5=0

(23)

The ability to query rapidly, set things in one go, change everything and have all the quantities automatically adjusted are at the realm of the design of the General Relativity functionality of the Physics package, resulting in a rather flexible computational environment.

 

These are the metrics by Kaigorodov; next are those published in 1962

g_Kaigorodov

____________________________________________________________

12&comma;34&comma;1=Authors=Kaigorodov (1962)&comma;Cahen (1964)&comma;Siklos (1981)&comma;Ozsvath (1987)&comma;PrimaryDescription=Einstein&comma;SecondaryDescription=Homogeneous&comma;Comments=All metrics with _epsilon <> 0 are equivalent to the cases _epsilon = +1, -1, _epsilon = 0 is anti-deSitter space

____________________________________________________________

12&comma;35&comma;1=Authors=Kaigorodov (1962)&comma;Cahen (1964)&comma;Siklos (1981)&comma;Ozsvath (1987)&comma;PrimaryDescription=Einstein&comma;SecondaryDescription=Homogeneous&comma;SimpleTransitive

____________________________________________________________

38&comma;2&comma;1=Authors=Kaigorodov (1962)&comma;PrimaryDescription=Hypersurface-Homogeneous&comma;SecondaryDescription=AlgebraicallySpecial

____________________________________________________________

38&comma;3&comma;1=Authors=Kaigorodov (1962)&comma;PrimaryDescription=Hypersurface-Homogeneous&comma;SecondaryDescription=AlgebraicallySpecial&comma;Comments=Note, there is a typo (the x^4 term) in this metric in Stephani which we were not able to verify from the original. This metric may not be correct!

(24)

g_`1962`

____________________________________________________________

12&comma;13&comma;1=Authors=Ozsvath, Schucking (1962)&comma;PrimaryDescription=Vacuum&comma;SecondaryDescription=Homogeneous&comma;PlaneWave&comma;Comments=geodesically complete, no curvature singularities

____________________________________________________________

12&comma;14&comma;1=Authors=Petrov (1962)&comma;PrimaryDescription=Vacuum&comma;SecondaryDescription=Homogeneous&comma;SimpleTransitive

____________________________________________________________

12&comma;34&comma;1=Authors=Kaigorodov (1962)&comma;Cahen (1964)&comma;Siklos (1981)&comma;Ozsvath (1987)&comma;PrimaryDescription=Einstein&comma;SecondaryDescription=Homogeneous&comma;Comments=All metrics with _epsilon <> 0 are equivalent to the cases _epsilon = +1, -1, _epsilon = 0 is anti-deSitter space

____________________________________________________________

12&comma;35&comma;1=Authors=Kaigorodov (1962)&comma;Cahen (1964)&comma;Siklos (1981)&comma;Ozsvath (1987)&comma;PrimaryDescription=Einstein&comma;SecondaryDescription=Homogeneous&comma;SimpleTransitive

____________________________________________________________

18&comma;2&comma;1=Authors=Ehlers and Kundt (1962)&comma;PrimaryDescription=vacuum solutions &comma;SecondaryDescription=degenerate static vacuum solution&comma;Comments=Table 18.2, case AI, _Psi2=-_b/(2*r^3)

____________________________________________________________

18&comma;2&comma;2=Authors=Ehlers and Kundt (1962)&comma;PrimaryDescription=vacuum solutions &comma;SecondaryDescription=degenerate static vacuum solution&comma;Comments=Table 18.2, case AII, _Psi2=_b*(1/(2*z^3))

____________________________________________________________

18&comma;2&comma;3=Authors=Ehlers and Kundt (1962)&comma;PrimaryDescription=vacuum solutions &comma;SecondaryDescription=degenerate static vacuum solution&comma;Comments=Table 18.2, case AIII, _Psi2=1/(2*z^3)

____________________________________________________________

18&comma;2&comma;4=Authors=Ehlers and Kundt (1962)&comma;PrimaryDescription=vacuum solutions &comma;SecondaryDescription=degenerate static vacuum solution&comma;Comments=Table 18.2, case BI, _Psi2=-_b*(1/(2*r^3))

____________________________________________________________

18&comma;2&comma;5=Authors=Ehlers and Kundt (1962)&comma;PrimaryDescription=vacuum solutions &comma;SecondaryDescription=degenerate static vacuum solution&comma;Comments=Table 18.2, case BII, _Psi2=_b*(1/(2*z^3))

____________________________________________________________

18&comma;2&comma;6=Authors=Ehlers and Kundt (1962)&comma;PrimaryDescription=vacuum solutions &comma;SecondaryDescription=degenerate static vacuum solution&comma;Comments=Table 18.2, case BIII, _Psi2=1/(2*z^3)

____________________________________________________________

18&comma;2&comma;7=Authors=Ehlers and Kundt (1962)&comma;PrimaryDescription=vacuum solutions &comma;SecondaryDescription=degenerate static vacuum solution&comma;Comments=Table 18.2, case C, _Psi2=(1/2)*(x+y)^3, + case

____________________________________________________________

18&comma;2&comma;8=Authors=Ehlers and Kundt (1962)&comma;PrimaryDescription=vacuum solutions &comma;SecondaryDescription=degenerate static vacuum solution&comma;Comments=Table 18.2, case C, _Psi2=-(1/2)*(x+y)^3, - case

____________________________________________________________

22&comma;59&comma;1=Authors=Misra and and Radhakrishna (1962)&comma;PrimaryDescription=EinsteinMaxwell&comma;SecondaryDescription=Cylindrically-Symmetric&comma;Comments=Null EM field, _W=Int((diff(_Theta(u),u)^2+diff(_eta(u),u)^2),u), u=(t-rho)/sqrt(2), the non-null case is with _Theta(t,rho)=_Psi(t,rho)*cos(_alpha), _Theta(t,rho)=_Psi(t,rho)*sin(_alpha)

____________________________________________________________

26&comma;21&comma;1=Authors=Newman and Tamburino (1962)&comma;PrimaryDescription=EinsteinMaxwell&comma;SecondaryDescription=Non-Aligned, Non-Null&comma;Comments=Spherical class

____________________________________________________________

26&comma;22&comma;1=Authors=Newman and Tamburino (1962)&comma;PrimaryDescription=EinsteinMaxwell&comma;SecondaryDescription=Non-Aligned, Non-Null&comma;Comments=Cyllindrical class

____________________________________________________________

26&comma;23&comma;1=Authors=Newman and Tamburino (1962)&comma;PrimaryDescription=EinsteinMaxwell&comma;SecondaryDescription=Non-Aligned, Non-Null&comma;Comments=Cyllindrical class

____________________________________________________________

27&comma;27&comma;1=Authors=Robinson and Trautman 1962, Debney et al. 1969, Talbot 1969, Robinson et al. 1969a, Lind 1974 &comma;PrimaryDescription=Generic&comma;SecondaryDescription=geodesic, shearfree and diverging null congruence&comma;Comments=rho:=1/(-(r+r0+I*Sigma)): Sigma:=-2*I*P^2*((diff(L,zb)-L*diff(L,u))-(diff(Lb,z)-L*diff(Lb,u))):

____________________________________________________________

27&comma;37&comma;1=Authors=Robinson and Trautman (1962)&comma;PrimaryDescription=EinsteinMaxwell&comma;SecondaryDescription=Non-Aligned, non-null&comma;Comments=admits geodesic, shearfree, twistfree null congruence, _rho=-1/r=_rho_b

____________________________________________________________

28&comma;8&comma;1=Authors=Robinson-Trautman (1962)&comma;PrimaryDescription=Vacuum&comma;SecondaryDescription=RobinsonTrautman&comma;Comments=diff(2*_P(u,z,zb)^2*diff(2*_P(u,z,zb)^2*ln(_P(u,z,zb)),z,zb),z,zb)+12*_m(u)*diff(ln(_P(u,z,zb)),u)-4*diff(_m(u),u)=0

____________________________________________________________

28&comma;12&comma;1=Authors=Robinson-Trautman (1962)&comma;PrimaryDescription=Vacuum&comma;SecondaryDescription=RobinsonTrautman&comma;Comments=2*P(u, z, zb)^2*diff(ln(P(u, z, zb)),z,zb)=_K(u), _K(u)=0,+1,-1

____________________________________________________________

28&comma;16&comma;1=Authors=Robinson-Trautman (1962)&comma;PrimaryDescription=Vacuum&comma;SecondaryDescription=RobinsonTrautman&comma;Comments=The coordinate zeta is changed to xi&comma;AlternativeOrthonormalTetrad1 and AlternativeNullTetrad1 are adapted to the shear-free null geodesic congruence (Robinson-Trautman tetrads)

____________________________________________________________

28&comma;26&comma;1=Authors=Robinson, Trautman (1962)&comma;PrimaryDescription=Vacuum&comma;SecondaryDescription=RobinsonTrautman&comma;Comments=One can use the diffeo r -> -r and u -> -u to make the assumption r > 0&comma;The case _m = 0 is Stephani, [28, 16,1]&comma;The metric is type D at points where r = 3*_m/(xi1+xi2) and type II on either side of this hypersurface. For convenience, it is assumed that 3*_m - r*(xi1 + xi2) > 0&comma;AlternativeOrthonormalTetrad1 and AlternativeNullTetrad1 are adapted to the shear-free null geodesic congruence (Robinson-Trautman tetrads)

____________________________________________________________

28&comma;26&comma;2=Authors=Robinson, Trautman (1962)&comma;PrimaryDescription=Vacuum&comma;SecondaryDescription=RobinsonTrautman&comma;Comments=One can use the diffeo r -> -r and u -> -u to make the assumption r > 0&comma;The case _m = 0 is Stephani, [28, 16,1].&comma;AlternativeOrthonormalTetrad1 and AlternativeNullTetrad1 are adapted to the shear-free null geodesic congruence (Robinson-Trautman tetrads)

____________________________________________________________

28&comma;26&comma;3=Authors=Robinson, Trautman (1962)&comma;PrimaryDescription=Vacuum&comma;SecondaryDescription=RobinsonTrautman&comma;Comments=One can use the diffeo r -> -r and u -> -u to make the assumption r > 0&comma;The case _m = 0 is Stephani, [28, 16,1].&comma;AlternativeOrthonormalTetrad1 and AlternativeNullTetrad1 are adapted to the shear-free null geodesic congruence (Robinson-Trautman tetrads)

____________________________________________________________

28&comma;37&comma;1=Authors=Robinson-Trautman (1962)&comma;PrimaryDescription=EinsteinMaxwell&comma;SecondaryDescription=RobinsonTrautman&comma;Comments=diff(2*P^2*diff(2*P(u,z,zb)^2*ln(P(u,z,zb)),z,zb),z,zb)+12*_m(u)*diff(ln(P(u,z,zb)),u)-4*diff(_m(u),u)=4*_kappa0*P^2*_h(u,z,zb)*_hb(u,z,zb), _Q(u,z,zb)*diff(_Qb(u,z,zb),u)-_Qb(u,z,zb)*diff(_Q(u,z,zb),u)=2*_P(u,z,zb)^2*(_hb(u,z,zb)*diff(_Qb(u,z,zb),zb)-_h(u,z,zb)*diff(_Q(u,z,zb),b)), diff(_h(u,z,zb),z)=diff(_Qb(u,z,zb)/2/_P(u,z,zb)^2,u), diff(_m(u,z,zb),z)=_kappa0*_hb(u,z,zb)*_Qb(u,z,zb)

____________________________________________________________

28&comma;43&comma;1=Authors=Robinson, Trautman (1962)&comma;PrimaryDescription=EinsteinMaxwell&comma;SecondaryDescription=PureRadiation&comma;RobinsonTrautman&comma;Comments=h1(u) is the conjugate of h(u)

____________________________________________________________

31&comma;40&comma;1=Authors= Petrov (1962)&comma;PrimaryDescription=Vacuum&comma;SecondaryDescription=Non-diverging

____________________________________________________________

35&comma;19&comma;1=Authors=Ehlers and Kundt 1962&comma;PrimaryDescription=Generic&comma;SecondaryDescription=PPWave&comma;Comments=constant null bivector, _k[mu]=-D_[mu](u)

____________________________________________________________

38&comma;2&comma;1=Authors=Kaigorodov (1962)&comma;PrimaryDescription=Hypersurface-Homogeneous&comma;SecondaryDescription=AlgebraicallySpecial

____________________________________________________________

38&comma;3&comma;1=Authors=Kaigorodov (1962)&comma;PrimaryDescription=Hypersurface-Homogeneous&comma;SecondaryDescription=AlgebraicallySpecial&comma;Comments=Note, there is a typo (the x^4 term) in this metric in Stephani which we were not able to verify from the original. This metric may not be correct!

(25)

 

The search can also be done visually, by properties. The following is the only solution in the database that is a Pure Radiation solution, of Petrov Type "D", Plebanski-Petrov Type "O" and that has Isometry Dimension equal to 1:

DifferentialGeometry:-Library:-MetricSearch

 

Set the solution, and everything related to work with it, in one go

g_28&comma;74&comma;1

Systems of spacetime Coordinates are: X=u&comma;η&comma;r&comma;y

Default differentiation variables for d_, D_ and dAlembertian are: X=u&comma;η&comma;r&comma;y

The Frolov and Khlebnikov (1975) metric in coordinates u&comma;η&comma;r&comma;y

Parameters: &kappa;0&comma;mu&comma;b&comma;d

Comments: Wⅈth m(u) = constant, th&ExponentialE; m&ExponentialE;trⅈc ⅈs Rⅈccⅈ flat an&DifferentialD; b&ExponentialE;com&ExponentialE;s 28.24 ⅈn St&ExponentialE;phanⅈ.

Resetting the signature of spacetime from "+ - - -" to `- + + +` in order to match the signature in the database of metrics:

 

The related Riemann invariants:

Riemanninvariants

r0=0,r1=0,r2=0,r3=0,w1=6mu2r6,w2=6mu3r9,m1=0,m2=0,m3=0,m4=0,m5=0

(26)

To list all the triads of numbers associated to the solutions digitized in the database (each triad indicates the Chapter and equation number with which each of these metrics appear in the book), enter

DifferentialGeometry:-Library:-RetrieveStephani&comma;1

8&comma;33&comma;1&comma;8&comma;34&comma;1&comma;12&comma;6&comma;1&comma;12&comma;7&comma;1&comma;12&comma;8&comma;1&comma;12&comma;8&comma;2&comma;12&comma;8&comma;3&comma;12&comma;8&comma;4&comma;12&comma;8&comma;5&comma;12&comma;8&comma;6&comma;12&comma;8&comma;7&comma;12&comma;8&comma;8&comma;12&comma;9&comma;1&comma;12&comma;9&comma;2&comma;12&comma;9&comma;3&comma;12&comma;9&comma;4&comma;12&comma;9&comma;5&comma;12&comma;9&comma;6&comma;12&comma;9&comma;7&comma;12&comma;12&comma;1&comma;12&comma;12&comma;2&comma;12&comma;12&comma;3&comma;12&comma;12&comma;4&comma;12&comma;13&comma;1&comma;12&comma;14&comma;1&comma;12&comma;16&comma;1&comma;12&comma;18&comma;1&comma;12&comma;19&comma;1&comma;12&comma;21&comma;1&comma;12&comma;23&comma;1&comma;12&comma;23&comma;2&comma;12&comma;23&comma;3&comma;12&comma;24.1&comma;1&comma;12&comma;24.2&comma;1&comma;12&comma;24.3&comma;1&comma;12&comma;26&comma;1&comma;12&comma;27&comma;1&comma;12&comma;28&comma;1&comma;12&comma;29&comma;1&comma;12&comma;30&comma;1&comma;12&comma;31&comma;1&comma;12&comma;32&comma;1&comma;12&comma;34&comma;1&comma;12&comma;35&comma;1&comma;12&comma;36&comma;1&comma;12&comma;37&comma;1&comma;12&comma;37&comma;2&comma;12&comma;37&comma;3&comma;12&comma;37&comma;4&comma;12&comma;37&comma;5&comma;12&comma;37&comma;6&comma;12&comma;37&comma;7&comma;12&comma;38&comma;1&comma;12&comma;38&comma;2&comma;12&comma;38&comma;3&comma;12&comma;38&comma;4&comma;12&comma;38&comma;5&comma;13&comma;1&comma;1&comma;13&comma;1&comma;2&comma;13&comma;1&comma;3&comma;13&comma;2&comma;1&comma;13&comma;2&comma;2&comma;13&comma;2&comma;3&comma;13&comma;3&comma;1&comma;13&comma;7&comma;1&comma;13&comma;7&comma;2&comma;13&comma;7&comma;3&comma;13&comma;7&comma;4&comma;13&comma;7&comma;5&comma;13&comma;7&comma;6&comma;13&comma;7&comma;7&comma;13&comma;7&comma;8&comma;13&comma;9&comma;1&comma;13&comma;14&comma;1&comma;13&comma;14&comma;2&comma;13&comma;14&comma;3&comma;13&comma;15&comma;1&comma;13&comma;15&comma;2&comma;13&comma;15&comma;3&comma;13&comma;15&comma;4&comma;13&comma;17&comma;1&comma;13&comma;19&comma;1&comma;13&comma;22&comma;1&comma;13&comma;31&comma;1&comma;13&comma;32&comma;1&comma;13&comma;35&comma;1&comma;13&comma;46&comma;1&comma;13&comma;48&comma;1&comma;13&comma;49&comma;1&comma;13&comma;49&comma;2&comma;13&comma;51&comma;1&comma;13&comma;53&comma;1&comma;13&comma;55&comma;1&comma;13&comma;56&comma;1&comma;13&comma;57&comma;1&comma;13&comma;58&comma;1&comma;13&comma;59&comma;1&comma;13&comma;59&comma;2&comma;13&comma;60&comma;1&comma;13&comma;60&comma;2&comma;13&comma;60&comma;3&comma;13&comma;60&comma;4&comma;13&comma;60&comma;5&comma;13&comma;60&comma;6&comma;13&comma;60&comma;7&comma;13&comma;60&comma;8&comma;13&comma;61&comma;1&comma;13&comma;61&comma;2&comma;13&comma;62&comma;1&comma;13&comma;62&comma;2&comma;13&comma;62&comma;4&comma;13&comma;62&comma;6&comma;13&comma;63&comma;1&comma;13&comma;63&comma;2&comma;13&comma;63&comma;3&comma;13&comma;63&comma;4&comma;13&comma;64&comma;1&comma;13&comma;64&comma;2&comma;13&comma;64&comma;3&comma;13&comma;64&comma;4&comma;13&comma;65&comma;1&comma;13&comma;67&comma;1&comma;13&comma;67&comma;2&comma;13&comma;69&comma;1&comma;13&comma;71&comma;1&comma;13&comma;72&comma;1&comma;13&comma;73&comma;1&comma;13&comma;74&comma;1&comma;13&comma;74&comma;2&comma;13&comma;74&comma;3&comma;13&comma;76&comma;1&comma;13&comma;77&comma;1&comma;13&comma;77&comma;2&comma;13&comma;79&comma;1&comma;13&comma;79&comma;2&comma;13&comma;80&comma;1&comma;13&comma;81&comma;1&comma;13&comma;83&comma;1&comma;13&comma;84&comma;1&comma;13&comma;84&comma;2&comma;13&comma;84&comma;3&comma;13&comma;85&comma;1&comma;13&comma;85&comma;2&comma;13&comma;86&comma;1&comma;13&comma;87&comma;1&comma;14&comma;6.1&comma;1&comma;14&comma;6.2&comma;1&comma;14&comma;6.3&comma;1&comma;14&comma;7&comma;1&comma;14&comma;8.1&comma;1&comma;14&comma;8.2&comma;1&comma;14&comma;8.3&comma;1&comma;14&comma;9.1&comma;1&comma;14&comma;9.2&comma;1&comma;14&comma;10&comma;1&comma;14&comma;10&comma;2&comma;14&comma;12&comma;1&comma;14&comma;12&comma;2&comma;14&comma;12&comma;3&comma;14&comma;14&comma;1&comma;14&comma;14&comma;2&comma;14&comma;15&comma;1&comma;14&comma;15.1&comma;2&comma;14&comma;15.2&comma;2&comma;14&comma;15.3&comma;2&comma;14&comma;16&comma;1&comma;14&comma;16&comma;2&comma;14&comma;17&comma;1&comma;14&comma;18&comma;1&comma;14&comma;18&comma;2&comma;14&comma;19&comma;1&comma;14&comma;20&comma;1&comma;14&comma;21&comma;1&comma;14&comma;21&comma;2&comma;14&comma;21&comma;3&comma;14&comma;22&comma;1&comma;14&comma;23&comma;1&comma;14&comma;24&comma;1&comma;14&comma;25&comma;1&comma;14&comma;26&comma;1&comma;14&comma;26&comma;2&comma;14&comma;26&comma;3&comma;14&comma;26&comma;4&comma;14&comma;27&comma;1&comma;14&comma;28&comma;1&comma;14&comma;28&comma;2&comma;14&comma;28&comma;3&comma;14&comma;29&comma;1&comma;14&comma;30&comma;1&comma;14&comma;31&comma;1&comma;14&comma;32&comma;1&comma;14&comma;33&comma;1&comma;14&comma;35&comma;1&comma;14&comma;37&comma;1&comma;14&comma;38&comma;1&comma;14&comma;38&comma;2&comma;14&comma;38&comma;3&comma;14&comma;39&comma;1&comma;14&comma;39&comma;2&comma;14&comma;39&comma;3&comma;14&comma;39&comma;4&comma;14&comma;39&comma;5&comma;14&comma;39&comma;6&comma;14&comma;40&comma;1&comma;14&comma;41&comma;1&comma;14&comma;42&comma;1&comma;14&comma;46&comma;1&comma;15&comma;3&comma;1&comma;15&comma;3&comma;2&comma;15&comma;4&comma;1&comma;15&comma;4&comma;2&comma;15&comma;4&comma;3&comma;15&comma;9&comma;1&comma;15&comma;10&comma;1&comma;15&comma;12&comma;1&comma;15&comma;12&comma;2&comma;15&comma;12&comma;3&comma;15&comma;12&comma;4&comma;15&comma;12&comma;5&comma;15&comma;12&comma;6&comma;15&comma;17&comma;1&comma;15&comma;17&comma;2&comma;15&comma;17&comma;3&comma;15&comma;17&comma;4&comma;15&comma;18&comma;1&comma;15&comma;19&comma;1&comma;15&comma;19&comma;2&comma;15&comma;20&comma;1&comma;15&comma;21&comma;1&comma;15&comma;21&comma;2&comma;15&comma;22&comma;1&comma;15&comma;23&comma;1&comma;15&comma;23&comma;2&comma;15&comma;24&comma;1&comma;15&comma;24&comma;2&comma;15&comma;25&comma;1&comma;15&comma;25&comma;2&comma;15&comma;26&comma;1&comma;15&comma;26&comma;2&comma;15&comma;27&comma;1&comma;15&comma;27&comma;2&comma;15&comma;27&comma;3&comma;15&comma;27&comma;4&comma;15&comma;27&comma;5&comma;15&comma;27&comma;6&comma;15&comma;27&comma;7&comma;15&comma;27&comma;8&comma;15&comma;28&comma;1&comma;15&comma;29&comma;1&comma;15&comma;30&comma;1&comma;15&comma;31&comma;1&comma;15&comma;32&comma;1&comma;15&comma;34&comma;1&comma;15&comma;34&comma;2&comma;15&comma;34&comma;3&comma;15&comma;43&comma;1&comma;15&comma;43&comma;2&comma;15&comma;43&comma;3&comma;15&comma;50&comma;1&comma;15&comma;50&comma;2&comma;15&comma;50&comma;3&comma;15&comma;50&comma;4&comma;15&comma;50&comma;5&comma;15&comma;50&comma;6&comma;15&comma;62&comma;1&comma;15&comma;62&comma;2&comma;15&comma;62&comma;3&comma;15&comma;63&comma;1&comma;15&comma;63&comma;2&comma;15&comma;63&comma;3&comma;15&comma;65&comma;1&comma;15&comma;65&comma;2&comma;15&comma;66&comma;1&comma;15&comma;66&comma;2&comma;15&comma;66&comma;3&comma;15&comma;75&comma;1&comma;15&comma;75&comma;2&comma;15&comma;75&comma;3&comma;15&comma;77&comma;1&comma;15&comma;77&comma;2&comma;15&comma;77&comma;3&comma;15&comma;78&comma;1&comma;15&comma;79&comma;1&comma;15&comma;81&comma;1&comma;15&comma;81&comma;2&comma;15&comma;81&comma;3&comma;15&comma;82&comma;1&comma;15&comma;82&comma;2&comma;15&comma;82&comma;3&comma;15&comma;83&comma;1.1&comma;15&comma;83&comma;1.2&comma;15&comma;83&comma;2&comma;15&comma;83&comma;3.1&comma;15&comma;83&comma;3.2&comma;15&comma;83&comma;4&comma;15&comma;84&comma;1&comma;15&comma;85&comma;1&comma;15&comma;85&comma;2&comma;15&comma;85&comma;3&comma;15&comma;86&comma;1&comma;15&comma;86&comma;2&comma;15&comma;86&comma;3&comma;15&comma;87&comma;1&comma;15&comma;87&comma;2&comma;15&comma;87&comma;3&comma;15&comma;87&comma;4&comma;15&comma;87&comma;5&comma;15&comma;88&comma;1&comma;15&comma;89&comma;1&comma;15&comma;90&comma;1&comma;16&comma;1&comma;1&comma;16&comma;1&comma;2&comma;16&comma;1&comma;3&comma;16&comma;1&comma;4&comma;16&comma;1&comma;5&comma;16&comma;1&comma;6&comma;16&comma;1&comma;7&comma;16&comma;1&comma;8&comma;16&comma;1&comma;9&comma;16&comma;1&comma;10&comma;16&comma;1&comma;11&comma;16&comma;1&comma;12&comma;16&comma;1&comma;13&comma;16&comma;1&comma;14&comma;16&comma;1&comma;15&comma;16&comma;1&comma;16&comma;16&comma;1&comma;17&comma;16&comma;1&comma;18&comma;16&comma;1&comma;19&comma;16&comma;1&comma;20&comma;16&comma;1&comma;21&comma;16&comma;1&comma;22&comma;16&comma;1&comma;23&comma;16&comma;1&comma;24&comma;16&comma;1&comma;25&comma;16&comma;1&comma;26&comma;16&comma;1&comma;27&comma;16&comma;14&comma;1&comma;16&comma;14&comma;2&comma;16&comma;14&comma;3&comma;16&comma;14&comma;4&comma;16&comma;14&comma;5&comma;16&comma;14&comma;6&comma;16&comma;14&comma;7&comma;16&comma;14&comma;8&comma;16&comma;14&comma;9&comma;16&comma;14&comma;10&comma;16&comma;14&comma;11&comma;16&comma;14&comma;12&comma;16&comma;14&comma;13&comma;16&comma;14&comma;14&comma;16&comma;14&comma;15&comma;16&comma;14&comma;16&comma;16&comma;14&comma;17&comma;16&comma;14&comma;18&comma;16&comma;14&comma;19&comma;16&comma;14&comma;20&comma;16&comma;18&comma;1&comma;16&comma;19&comma;1&comma;16&comma;20&comma;1&comma;16&comma;22&comma;1&comma;16&comma;24&comma;1&comma;16&comma;24&comma;2&comma;16&comma;43&comma;1&comma;16&comma;45&comma;1&comma;16&comma;45&comma;2&comma;16&comma;46&comma;1&comma;16&comma;47&comma;1&comma;16&comma;50&comma;1&comma;16&comma;51&comma;1&comma;16&comma;54&comma;1&comma;16&comma;61&comma;1&comma;16&comma;63&comma;1&comma;16&comma;66&comma;1&comma;16&comma;66&comma;2&comma;16&comma;66&comma;3&comma;16&comma;67&comma;1&comma;16&comma;71&comma;1&comma;16&comma;72&comma;1&comma;16&comma;73&comma;1&comma;16&comma;74&comma;1&comma;16&comma;75&comma;1&comma;16&comma;76&comma;1&comma;16&comma;77&comma;1&comma;16&comma;77&comma;2&comma;16&comma;77&comma;3&comma;16&comma;78&comma;1&comma;17&comma;4&comma;1&comma;17&comma;4&comma;2&comma;17&comma;5&comma;1&comma;17&comma;9&comma;1&comma;17&comma;14&comma;1&comma;17&comma;15&comma;1&comma;17&comma;15&comma;2&comma;17&comma;16&comma;1&comma;17&comma;20&comma;1&comma;17&comma;22&comma;1&comma;17&comma;23&comma;1&comma;17&comma;24&comma;1&comma;17&comma;24&comma;2&comma;17&comma;26&comma;1&comma;17&comma;27&comma;1&comma;17&comma;27&comma;2&comma;17&comma;28&comma;1&comma;17&comma;28&comma;2&comma;17&comma;29&comma;1&comma;17&comma;29&comma;2&comma;17&comma;30&comma;1&comma;17&comma;31&comma;1&comma;18&comma;2&comma;1&comma;18&comma;2&comma;2&comma;18&comma;2&comma;3&comma;18&comma;2&comma;4&comma;18&comma;2&comma;5&comma;18&comma;2&comma;6&comma;18&comma;2&comma;7&comma;18&comma;2&comma;8&comma;18&comma;48&comma;1&comma;18&comma;48&comma;2&comma;18&comma;49&comma;1&comma;18&comma;50&comma;1&comma;18&comma;64&comma;1&comma;18&comma;64&comma;2&comma;18&comma;64&comma;3&comma;18&comma;65&comma;1&comma;18&comma;66&comma;1&comma;18&comma;67&comma;1&comma;18&comma;71&comma;1&comma;18&comma;75&comma;1&comma;19&comma;17&comma;1&comma;19&comma;17&comma;2&comma;19&comma;21&comma;1&comma;20&comma;3&comma;1&comma;20&comma;4&comma;1&comma;20&comma;5&comma;1&comma;20&comma;7&comma;1&comma;20&comma;8&comma;1&comma;20&comma;9&comma;1&comma;20&comma;10&comma;1&comma;20&comma;11&comma;1&comma;20&comma;12&comma;1&comma;20&comma;13&comma;1&comma;20&comma;15&comma;1&comma;20&comma;16&comma;1&comma;20&comma;17&comma;1&comma;20&comma;20&comma;1&comma;20&comma;21&comma;1&comma;20&comma;23&comma;1&comma;20&comma;27&comma;1&comma;20&comma;28&comma;1&comma;20&comma;29&comma;1&comma;20&comma;32&comma;1&comma;20&comma;34&comma;1&comma;20&comma;36&comma;1&comma;20&comma;38&comma;1&comma;20&comma;38&comma;2&comma;20&comma;38&comma;3&comma;20&comma;44&comma;1&comma;20&comma;46&comma;1&comma;20&comma;54&comma;1&comma;20&comma;57&comma;1&comma;20&comma;57&comma;2&comma;21&comma;1&comma;1&comma;21&comma;1&comma;2&comma;21&comma;1&comma;3&comma;21&comma;4&comma;1&comma;21&comma;5&comma;1&comma;21&comma;6&comma;1&comma;21&comma;7&comma;1&comma;21&comma;10&comma;1&comma;21&comma;10&comma;2&comma;21&comma;11&comma;1&comma;21&comma;16&comma;1&comma;21&comma;17&comma;1&comma;21&comma;17&comma;2&comma;21&comma;20&comma;1&comma;21&comma;22&comma;1&comma;21&comma;22&comma;2&comma;21&comma;24&comma;1&comma;21&comma;28&comma;1&comma;21&comma;30&comma;1&comma;21&comma;30&comma;2&comma;21&comma;30&comma;3&comma;21&comma;31&comma;1&comma;21&comma;35&comma;1&comma;21&comma;41&comma;1&comma;21&comma;52&comma;1&comma;21&comma;57&comma;1&comma;21&comma;58&comma;1&comma;21&comma;59&comma;1&comma;21&comma;60&comma;1&comma;21&comma;61&comma;1&comma;21&comma;61&comma;2&comma;21&comma;61&comma;3&comma;21&comma;61&comma;4&comma;21&comma;61&comma;5&comma;21&comma;70&comma;1&comma;21&comma;71&comma;1&comma;21&comma;72&comma;1&comma;21&comma;73&comma;1&comma;21&comma;74&comma;1&comma;21&comma;74&comma;2&comma;21&comma;74&comma;3&comma;21&comma;74&comma;4&comma;22&comma;3&comma;1&comma;22&comma;4&comma;1&comma;22&comma;4&comma;2&comma;22&comma;5&comma;1&comma;22&comma;6&comma;1&comma;22&comma;6&comma;2&comma;22&comma;7&comma;1&comma;22&comma;8&comma;1&comma;22&comma;8&comma;2&comma;22&comma;8&comma;3&comma;22&comma;8&comma;4&comma;22&comma;8&comma;5&comma;22&comma;11&comma;1&comma;22&comma;12&comma;1&comma;22&comma;13&comma;1&comma;22&comma;14&comma;1&comma;22&comma;15&comma;1&comma;22&comma;16&comma;1&comma;22&comma;17&comma;1&comma;22&comma;18&comma;1&comma;22&comma;18&comma;2&comma;22&comma;19&comma;1&comma;22&comma;22&comma;1&comma;22&comma;23&comma;1&comma;22&comma;24&comma;1&comma;22&comma;27&comma;1&comma;22&comma;28&comma;1&comma;22&comma;29&comma;1&comma;22&comma;34&comma;1&comma;22&comma;34&comma;2&comma;22&comma;34&comma;3&comma;22&comma;34&comma;4&comma;22&comma;34&comma;5&comma;22&comma;47&comma;1&comma;22&comma;48&comma;1&comma;22&comma;49&comma;1&comma;22&comma;50&comma;1&comma;22&comma;51&comma;1&comma;22&comma;52&comma;1&comma;22&comma;53&comma;1&comma;22&comma;59&comma;1&comma;22&comma;63&comma;1&comma;22&comma;64&comma;1&comma;22&comma;67&comma;1&comma;22&comma;67&comma;2&comma;22&comma;70&comma;1&comma;23&comma;1&comma;1&comma;23&comma;2&comma;1&comma;23&comma;2&comma;2&comma;23&comma;2&comma;3&comma;23&comma;2&comma;4&comma;23&comma;3&comma;1&comma;23&comma;4&comma;1&comma;23&comma;6&comma;1&comma;23&comma;6&comma;2&comma;23&comma;7&comma;1&comma;23&comma;8&comma;1&comma;23&comma;8&comma;2&comma;23&comma;8&comma;3&comma;23&comma;11&comma;1&comma;23&comma;12&comma;1&comma;23&comma;13&comma;1&comma;23&comma;13&comma;2&comma;23&comma;13&comma;3&comma;23&comma;13&comma;4&comma;23&comma;14&comma;1&comma;23&comma;14&comma;2&comma;23&comma;14&comma;3&comma;23&comma;14&comma;4&comma;23&comma;14&comma;5&comma;23&comma;14&comma;6&comma;23&comma;14&comma;7&comma;23&comma;15&comma;1&comma;23&comma;15&comma;2&comma;23&comma;15&comma;3&comma;23&comma;15&comma;4&comma;23&comma;15&comma;5&comma;23&comma;16&comma;1&comma;23&comma;16&comma;2&comma;23&comma;16&comma;3&comma;23&comma;16&comma;4&comma;23&comma;16&comma;5&comma;23&comma;17&comma;1&comma;23&comma;17&comma;2&comma;23&comma;18&comma;1&comma;23&comma;18&comma;2&comma;23&comma;19&comma;1&comma;23&comma;19&comma;2&comma;23&comma;20&comma;1&comma;23&comma;20&comma;2&comma;23&comma;20&comma;3&comma;23&comma;21&comma;1&comma;23&comma;21&comma;2&comma;23&comma;22&comma;1&comma;23&comma;23&comma;1&comma;23&comma;24&comma;1&comma;23&comma;25&comma;1&comma;23&comma;26&comma;1&comma;23&comma;26&comma;2&comma;23&comma;26&comma;3&comma;23&comma;26&comma;4&comma;23&comma;26&comma;5&comma;23&comma;26&comma;6&comma;23&comma;26&comma;7&comma;23&comma;26&comma;8&comma;23&comma;30&comma;1&comma;23&comma;31&comma;1&comma;23&comma;32&comma;1&comma;23&comma;32&comma;2&comma;23&comma;32&comma;3&comma;23&comma;33&comma;1&comma;23&comma;33&comma;2&comma;23&comma;33&comma;3&comma;23&comma;34&comma;1&comma;23&comma;35&comma;1&comma;23&comma;36&comma;1&comma;23&comma;36&comma;2&comma;23&comma;36&comma;3&comma;23&comma;37&comma;1&comma;23&comma;38&comma;1&comma;23&comma;38&comma;2&comma;23&comma;38&comma;3&comma;23&comma;39&comma;1&comma;23&comma;39&comma;2&comma;23&comma;40&comma;1&comma;23&comma;40&comma;2&comma;23&comma;40&comma;3&comma;23&comma;40&comma;4&comma;23&comma;41&comma;1&comma;23&comma;41&comma;2&comma;23&comma;41&comma;3&comma;23&comma;42&comma;1&comma;23&comma;43&comma;1&comma;23&comma;44&comma;1&comma;23&comma;44&comma;2&comma;23&comma;45&comma;1&comma;23&comma;46&comma;1&comma;23&comma;47&comma;1&comma;23&comma;48&comma;1&comma;23&comma;48&comma;2&comma;23&comma;49&comma;1&comma;23&comma;50&comma;1&comma;23&comma;51&comma;1&comma;23&comma;52&comma;1&comma;23&comma;53&comma;1&comma;24&comma;2&comma;1&comma;24&comma;2&comma;2&comma;24&comma;2&comma;3&comma;24&comma;2&comma;4&comma;24&comma;2&comma;5&comma;24&comma;2&comma;6&comma;24&comma;2&comma;7&comma;24&comma;2&comma;8&comma;24&comma;2&comma;9&comma;24&comma;2&comma;10&comma;24&comma;2&comma;11&comma;24&comma;21&comma;1&comma;24&comma;22&comma;1&comma;24&comma;28&comma;1&comma;24&comma;35&comma;1&comma;24&comma;37&comma;1&comma;24&comma;37&comma;2&comma;24&comma;37&comma;3&comma;24&comma;37&comma;4&comma;24&comma;37&comma;5&comma;24&comma;37&comma;6&comma;24&comma;37&comma;7&comma;24&comma;37&comma;8&comma;24&comma;37&comma;9&comma;24&comma;38&comma;1&comma;24&comma;38&comma;2&comma;24&comma;40&comma;1&comma;24&comma;46&comma;1&comma;24&comma;46&comma;2&comma;24&comma;46&comma;3&comma;24&comma;47&comma;1&comma;24&comma;51&comma;1&comma;25&comma;2&comma;1&comma;25&comma;5&comma;1&comma;25&comma;5&comma;2&comma;25&comma;6&comma;1&comma;25&comma;9&comma;1&comma;25&comma;12&comma;1&comma;25&comma;16&comma;1&comma;25&comma;16&comma;2&comma;25&comma;16&comma;3&comma;25&comma;16&comma;4&comma;25&comma;22&comma;1&comma;25&comma;24&comma;1&comma;25&comma;26&comma;1&comma;25&comma;26&comma;2&comma;25&comma;26&comma;3&comma;25&comma;28&comma;1&comma;25&comma;30&comma;1&comma;25&comma;31&comma;1&comma;25&comma;35&comma;1&comma;25&comma;36&comma;1&comma;25&comma;36&comma;2&comma;25&comma;39&comma;1&comma;25&comma;43&comma;1&comma;25&comma;45&comma;1&comma;25&comma;55&comma;1&comma;25&comma;56&comma;1&comma;25&comma;56&comma;2&comma;25&comma;57&comma;1&comma;25&comma;57&comma;2&comma;25&comma;59&comma;1&comma;25&comma;61&comma;1&comma;25&comma;62&comma;1&comma;25&comma;65&comma;1&comma;25&comma;68&comma;1&comma;25&comma;68&comma;2&comma;25&comma;68&comma;3&comma;25&comma;74&comma;1&comma;26&comma;5&comma;1&comma;26&comma;5&comma;2&comma;26&comma;5&comma;3&comma;26&comma;5&comma;4&comma;26&comma;6&comma;1&comma;26&comma;11&comma;1&comma;26&comma;13&comma;1&comma;26&comma;14&comma;1&comma;26&comma;14&comma;2&comma;26&comma;15&comma;1&comma;26&comma;16&comma;1&comma;26&comma;16&comma;2&comma;26&comma;16&comma;3&comma;26&comma;16&comma;4&comma;26&comma;16&comma;5&comma;26&comma;16&comma;6&comma;26&comma;19&comma;1&comma;26&comma;21&comma;1&comma;26&comma;22&comma;1&comma;26&comma;23&comma;1&comma;26&comma;25&comma;1&comma;26&comma;25&comma;2&comma;26&comma;25&comma;3&comma;27&comma;27&comma;1&comma;27&comma;37&comma;1&comma;28&comma;8&comma;1&comma;28&comma;12&comma;1&comma;28&comma;16&comma;1&comma;28&comma;17&comma;1&comma;28&comma;21&comma;1&comma;28&comma;21&comma;2&comma;28&comma;21&comma;3&comma;28&comma;21&comma;4&comma;28&comma;21&comma;5&comma;28&comma;21&comma;6&comma;28&comma;21&comma;7&comma;28&comma;24&comma;1&comma;28&comma;25&comma;1&comma;28&comma;26&comma;1&comma;28&comma;26&comma;2&comma;28&comma;26&comma;3&comma;28&comma;37&comma;1&comma;28&comma;41&comma;1&comma;28&comma;42&comma;1&comma;28&comma;43&comma;1&comma;28&comma;44&comma;1&comma;28&comma;44&comma;2&comma;28&comma;44&comma;3&comma;28&comma;44&comma;4&comma;28&comma;44&comma;5&comma;28&comma;44&comma;6&comma;28&comma;45&comma;1&comma;28&comma;45&comma;2&comma;28&comma;46&comma;1&comma;28&comma;46&comma;2&comma;28&comma;47&comma;1&comma;28&comma;50&comma;1&comma;28&comma;53&comma;1&comma;28&comma;53&comma;2&comma;28&comma;55&comma;1&comma;28&comma;55&comma;2&comma;28&comma;56.1&comma;1&comma;28&comma;56.2&comma;2&comma;28&comma;56.2&comma;3&comma;28&comma;56.3&comma;1&comma;28&comma;56.4&comma;1&comma;28&comma;56.5&comma;1&comma;28&comma;56.6&comma;1&comma;28&comma;58.2&comma;1&comma;28&comma;58.3&comma;1&comma;28&comma;58.3&comma;2&comma;28&comma;58.4&comma;1&comma;28&comma;59&comma;1&comma;28&comma;60&comma;1&comma;28&comma;61&comma;1&comma;28&comma;64&comma;1&comma;28&comma;66&comma;1&comma;28&comma;67&comma;1&comma;28&comma;68&comma;1&comma;28&comma;71&comma;1&comma;28&comma;72&comma;1&comma;28&comma;73&comma;1&comma;28&comma;74&comma;1&comma;28&comma;78&comma;1&comma;29&comma;13&comma;1&comma;29&comma;34&comma;1&comma;29&comma;38&comma;1&comma;29&comma;46&comma;1&comma;29&comma;53&comma;1&comma;29&comma;60&comma;1&comma;29&comma;62&comma;1&comma;29&comma;64&comma;1&comma;29&comma;71&comma;1&comma;29&comma;74&comma;1&comma;29&comma;75&comma;1&comma;30&comma;14&comma;1&comma;30&comma;20&comma;1&comma;30&comma;22&comma;1&comma;30&comma;26&comma;1&comma;30&comma;27&comma;1&comma;30&comma;27&comma;2&comma;30&comma;28&comma;1&comma;30&comma;28&comma;2&comma;30&comma;28&comma;3&comma;30&comma;30&comma;1&comma;30&comma;33&comma;1&comma;30&comma;34&comma;1&comma;30&comma;36&comma;1&comma;30&comma;37&comma;1&comma;30&comma;43&comma;1&comma;30&comma;45&comma;1&comma;30&comma;46&comma;1&comma;30&comma;47&comma;1&comma;30&comma;50&comma;1&comma;30&comma;51&comma;1&comma;30&comma;51&comma;2&comma;30&comma;51&comma;3&comma;30&comma;52&comma;1&comma;30&comma;58&comma;1&comma;30&comma;59&comma;1&comma;30&comma;62&comma;1&comma;30&comma;64&comma;1&comma;30&comma;65&comma;1&comma;30&comma;69&comma;1&comma;30&comma;71&comma;1&comma;30&comma;73&comma;1&comma;30&comma;76&comma;1&comma;31&comma;7&comma;1&comma;31&comma;8&comma;1&comma;31&comma;26&comma;1&comma;31&comma;34&comma;1&comma;31&comma;34&comma;2&comma;31&comma;38&comma;1&comma;31&comma;40&comma;1&comma;31&comma;41&comma;1&comma;31&comma;43&comma;1&comma;31&comma;43&comma;2&comma;31&comma;43&comma;3&comma;31&comma;49&comma;1&comma;31&comma;50&comma;1&comma;31&comma;56&comma;1&comma;31&comma;57&comma;1&comma;31&comma;58&comma;1&comma;31&comma;60&comma;1&comma;31&comma;61&comma;1&comma;32&comma;31&comma;1&comma;32&comma;43&comma;1&comma;32&comma;47&comma;1&comma;32&comma;59&comma;1&comma;32&comma;60&comma;1&comma;32&comma;62&comma;1&comma;32&comma;71&comma;1&comma;32&comma;78&comma;1&comma;32&comma;80&comma;1&comma;32&comma;80&comma;2&comma;32&comma;80&comma;3&comma;32&comma;80&comma;4&comma;32&comma;94&comma;1&comma;32&comma;96&comma;1&comma;32&comma;96&comma;2&comma;32&comma;99&comma;1&comma;32&comma;102&comma;1&comma;32&comma;102&comma;2&comma;32&comma;104&comma;1&comma;33&comma;5&comma;1&comma;33&comma;7&comma;1&comma;33&comma;8&comma;1&comma;33&comma;8&comma;2&comma;33&comma;8&comma;3&comma;33&comma;9&comma;1&comma;33&comma;10&comma;1&comma;33&comma;10&comma;2&comma;33&comma;11&comma;1&comma;33&comma;12&comma;1&comma;33&comma;12&comma;2&comma;33&comma;13&comma;1&comma;33&comma;14&comma;1&comma;33&comma;15&comma;1&comma;33&comma;16&comma;1&comma;33&comma;17&comma;1&comma;33&comma;18&comma;1&comma;33&comma;19&comma;1&comma;33&comma;20&comma;1&comma;33&comma;22&comma;1&comma;33&comma;23&comma;1&comma;33&comma;25&comma;1&comma;33&comma;25&comma;2&comma;33&comma;28&comma;1&comma;33&comma;30&comma;1&comma;33&comma;31&comma;1&comma;33&comma;34&comma;1&comma;33&comma;35&comma;1&comma;33&comma;38&comma;1&comma;33&comma;40&comma;1&comma;33&comma;43&comma;1&comma;33&comma;44&comma;1&comma;33&comma;45&comma;1&comma;33&comma;48&comma;1&comma;33&comma;49&comma;1&comma;34&comma;23&comma;1&comma;34&comma;25&comma;1&comma;34&comma;128&comma;1&comma;35&comma;6&comma;1&comma;35&comma;7&comma;1&comma;35&comma;8&comma;1&comma;35&comma;9&comma;1&comma;35&comma;19&comma;1&comma;35&comma;29&comma;1&comma;35&comma;30&comma;1&comma;35&comma;33&comma;1&comma;35&comma;34&comma;1&comma;35&comma;35&comma;1&comma;35&comma;73&comma;1&comma;35&comma;74&comma;1&comma;35&comma;75&comma;1&comma;35&comma;76&comma;1&comma;35&comma;76&comma;2&comma;35&comma;77&comma;1&comma;35&comma;78&comma;1&comma;35&comma;79&comma;1&comma;35&comma;80&comma;1&comma;36&comma;11&comma;1&comma;36&comma;12&comma;1&comma;36&comma;13&comma;1&comma;36&comma;14&comma;1&comma;36&comma;15&comma;1&comma;36&comma;18&comma;1&comma;36&comma;18&comma;2&comma;36&comma;19&comma;1&comma;36&comma;20&comma;1&comma;36&comma;22&comma;1&comma;36&comma;23&comma;1&comma;36&comma;24&comma;1&comma;36&comma;25&comma;1&comma;36&comma;26&comma;1&comma;36&comma;28&comma;1&comma;36&comma;30&comma;1&comma;36&comma;31&comma;1&comma;36&comma;32&comma;1&comma;36&comma;33&comma;1&comma;36&comma;34&comma;1&comma;36&comma;35&comma;1&comma;36&comma;36&comma;1&comma;36&comma;37&comma;1&comma;37&comma;13&comma;1&comma;37&comma;21&comma;1&comma;37&comma;39&comma;1&comma;37&comma;40&comma;1&comma;37&comma;45&comma;1&comma;37&comma;49&comma;1&comma;37&comma;50&comma;1&comma;37&comma;51&comma;1&comma;37&comma;53&comma;1&comma;37&comma;55&comma;1&comma;37&comma;57&comma;1&comma;37&comma;58&comma;1&comma;37&comma;58&comma;2&comma;37&comma;58&comma;3&comma;37&comma;64&comma;1&comma;37&comma;65&comma;1&comma;37&comma;66&comma;1&comma;37&comma;68&comma;1&comma;37&comma;83&comma;1&comma;37&comma;84&comma;1&comma;37&comma;98&comma;1&comma;37&comma;104&comma;1&comma;37&comma;106&comma;1&comma;38&comma;1&comma;1&comma;38&comma;2&comma;1&comma;38&comma;3&comma;1&comma;38&comma;4&comma;1&comma;38&comma;5&comma;1&comma;38&comma;6&comma;1

(27)

There are as many solutions as

nops 

991

(28)

Operatorial Algebraic Expressions Involving the Differential Operators μ, 𝒟μ and  (nabla)

Maple 2016 implements the concept of operatorial expressions, that is, the ability to compute with the differential operators μ , 𝒟μ and nabla  from the Vectors subpackage, algebraically, considering them as noncommutative operators and using multiplication to express their application within expressions. When desired, the multiplication is transformed into application of the differential operator to the operands that appear to its right.

The differential operators μ , 𝒟μ and nabla  are thus now considered noncommutative, in that and they are assumed to commute only with mathematical objects that do not depend on the coordinates (that is, constants with respect to their differentiation variables). This also means that the Commutator and Anticommutator commands, as well as the commands Library:-Commute and Library:-Anticommute, all work with these differential operators taking their noncommutative property into account.

Among other things, this new ability to compute with differential operators algebraically, when combined with the new ability to factorize expressions involving products of noncommutative operands, allows for factorizing algebraic expressions representing differential operators of higher order into products of algebraic expressions representing differential operators of lower order - an operation at the realm of solving non-linear differential equations; the first steps of this approach are now implemented too.

Examples

 

restart&semi; withPhysics&colon;withVectors&colon;

Consider the commutator between a scalar Ax&comma;y&comma;z and the nabla operator ; use compact display for convenience

PDEtools:-declareAx&comma;y&comma;z&comma; B_x&comma;y&comma;z

Ax&comma;y&comma;zwill now be displayed asA

Bx&comma;y&comma;zwill now be displayed asB

(29)

CommutatorNabla&comma; Ax&comma;y&comma;z

,A

(30)

New: the expanded form of this commutator now has the correct operatorial meaning:

expand

AA

(31)

  &period; B_x&comma;y&comma;z

AA·B

(32)

expand

A·BA·B

(33)

So all the algebra is performed taking  as a noncommutative operator, as we do when computing with paper and pencil. You can apply the differential operators at any time using the new Library:-ApplyProductsOfDifferentialOperators

Library:-ApplyProductsOfDifferentialOperators

Axi+Ayj+Azk·BA·B

(34)

The underlying types working at the core of this implementation of operatorial expressions

typeNabla&comma; noncommutative

true

(35)

Library:-CommuteNabla&comma; &alpha;

true

(36)

Library:-CommuteNabla&comma; x

false

(37)

The differentiation variables associated to  are the coordinates of the Cartesian cylindrical and spherical systems of coordinates: x&comma;y&comma;z&comma;ρ&comma;φ&comma;r&comma;θ.

The same concept is implemented for the differential operators of special and general relativity, μ , and  𝒟μ. Define system of coordinates, X, then A and B as a tensors and for convenience use a compact display

CoordinatesX

Default differentiation variables for d_, D_ and dAlembertian are: X=x1&comma;x2&comma;x3&comma;x4

Systems of spacetime Coordinates are: X=x1&comma;x2&comma;x3&comma;x4

X

(38)

DefineAmu&comma; Bmu

Defined objects with tensor properties

Aμ&comma;Bμ&comma;γμ&comma;σμ&comma;Xμ&comma;μ&comma;gμ,ν&comma;δμ,ν&comma;εα,β,μ,ν

(39)

PDEtools:-declareA&comma; BX

Ax1&comma;x2&comma;x3&comma;x4will now be displayed asA

Bx1&comma;x2&comma;x3&comma;x4will now be displayed asB

(40)

The commutator of μ and Aν multiplied by Bα , representing the application of μ can now be represented as

Commutatord_mu&comma; AnuX BalphaX

μ,AνBα

(41)

expand

μAνBαAνμBα

(42)

Note that to the right of μ in the first term there is the product AνBα , so that when applying the operator to the product, two terms result, one of which cancels the second term in (42)

Library:-ApplyProductsOfDifferentialOperators

μAνBα

(43)

As an example of the possibilities open with operatorial algebraic expressions combined with the new factorization of algebraic expressions involving noncommutative objects, consider the factorization of Laplace equation in a Euclidean space

Setupspaceindices&equals;lowercaselatin&comma; coordinates&equals;cartesian&comma; metric &equals; Euclidean

* Partial match of 'coordinates' against keyword 'coordinatesystems'

Default differentiation variables for d_, D_ and dAlembertian are: X=x&comma;y&comma;z&comma;t

Systems of spacetime Coordinates are: X=x&comma;y&comma;z&comma;t

The Euclidean metric in cartesian coordinates

Changing the signature of the tensor spacetime to: + + + +

coordinatesystems=X&comma;metric=1&comma;1=1&comma;2&comma;2=1&comma;3&comma;3=1&comma;4&comma;4=1&comma;spaceindices=lowercaselatin

(44)

d_j2m2 &equals; 0

j2m2=0

(45)

Factor

jmj+m=0

(46)

Similar problem now with vectorial differential operators, split into time and space components,

withVectors

&x&comma;`+`&comma;`.`&comma;ChangeBasis&comma;ChangeCoordinates&comma;Component&comma;Curl&comma;DirectionalDiff&comma;Divergence&comma;Gradient&comma;Identify&comma;Laplacian&comma;&comma;Norm&comma;Setup&comma;diff

(47)

d_t2Nabla2&equals; 0

t22=0

(48)

Factor

tt+=0

(49)

d_t2d_j2 &equals; 0

t2j2=0

(50)

Factor

jtj+t=0

(51)

The same functionality is implemented for 𝒟μ, the covariant derivative operator. Set the spacetime to be curved, for instance using Schwarzschild's metric and redefine the compact display to use the new (spherical) coordinates

g_sc

Systems of spacetime Coordinates are: X=r&comma;θ&comma;φ&comma;t

Default differentiation variables for d_, D_ and dAlembertian are: X=r&comma;θ&comma;φ&comma;t

The Schwarzschild metric in coordinates r&comma;θ&comma;φ&comma;t

Parameters: m

PDEtools:-declareA&comma; BX

Ar&comma;θ&comma;φ&comma;twill now be displayed asA

Br&comma;θ&comma;φ&comma;twill now be displayed asB

(52)

The commutator of covariant derivatives

CommutatorD_mu&comma; D_nu

𝒟μ,𝒟ν

(53)

expand

𝒟μ𝒟ν𝒟ν𝒟μ

(54)

Multiply this result by a tensor function of the coordinates, say A&alpha;X defined in the lines above

  A&alpha;X

𝒟μ𝒟ν𝒟ν𝒟μAα

(55)

Apply the differential operators

Library:-ApplyProductsOfDifferentialOperators

𝒟μ𝒟νAα𝒟ν𝒟μAα

(56)

Compare with the expanded version before applying, i.e.: the same expression but expressed algebraically using multiplication instead of application

expand

𝒟μ𝒟νAα𝒟ν𝒟μAα

(57)

The Bianchi identity can be expressed in terms of commutators

CommutatorD_mu&comma;CommutatorD_nu&comma; D_rho &plus; CommutatorD_nu&comma;CommutatorD_rho&comma; D_mu &plus;CommutatorD_rho&comma;CommutatorD_mu&comma; D_nu &equals;0

𝒟μ,𝒟ν,𝒟ρ+𝒟ν,𝒟ρ,𝒟μ+𝒟ρ,𝒟μ,𝒟ν=0

(58)

Expand the first commutator

expandop1&comma;lhs

𝒟μ𝒟ν𝒟ρ𝒟μ𝒟ρ𝒟ν𝒟ν𝒟ρ𝒟μ+𝒟ρ𝒟ν𝒟μ

(59)

Expand the whole identity

expand

0=0

(60)

Let D_[mu] be the covariant derivative of gauge theory with A[mu] representing the gauge field; for the current signature,

Setupsignature

signature=- - - +

(61)

we have

interfaceimaginaryunit &equals; i

I

(62)

D_mu &equals; d_mu &plus; i e AmuX

𝒟μ=μ+eAμ

(63)

Note that the gauge field is introduced depending on the coordinates, which are omitted from the display due to the use of PDEtools:-declare in (52). Introduce now this definition in the Bianchi identity

SubstituteTensor&comma;

μ+eAμ,ν+eAν,ρ+eAρ+ν+eAν,ρ+eAρ,μ+eAμ+ρ+eAρ,μ+eAμ,ν+eAν=0

(64)

Expand the first commutator

expandop1&comma;lhs

eμνAρeμAρνeνAρμ+eAρμν

(65)

Expand the whole identity

expand

0=0

(66)

Apply the operatorial expression (65) to a function of the coordinates

PDEtools:-declarePhiX

Φr&comma;θ&comma;φ&comma;twill now be displayed asΦ

(67)

  PhiX

eμνAρeμAρνeνAρμ+eAρμνΦ

(68)

Library:-ApplyProductsOfDifferentialOperators

μνAρΦe

(69)

Apply the inner commutator of the first term of (64)

ν+eAνX,ρ+eAρX PhiX

eν,Aρ+eAν,ρΦ

(70)

expand

eνAρΦ+eAνρΦeρAνΦeAρνΦ

(71)

Library:-ApplyProductsOfDifferentialOperators

ΦeνAρρAν

(72)

Factorization of Expressions Involving Noncommutative Operators

One of the interesting things about the Physics package is that it was designed from scratch to extend the domain of operations of the Maple system from commutative variables to one that includes commutative, anticommutative and noncommutative variables, as well as abstract vectors and related (nabla) differential operators. In this line we have, among others, the following Physics commands working with this extended domain:

A new command, Physics:-Factor was added to the family of Physics commands `*`, `.`, `^`, diff, Expand, Normal, Simplify, Gtaylor, and Coefficients that handle expressions with noncommutative variables. The approach used in Physics:-Factor is similar to the one used in the other commands of this kind, (see for instance PerformOnAnticommutativeSystem), that is, to transform the problem into one that can be treated with the commands that work only with commutative variables, and from there extract the result for expressions involving noncommutative variables. This approach works in well-defined and relevant cases, effectively extending the computational domain of previously existing commands.

Physics:-Factor is also useful when working with noncommutative symbols representing abstract matrices, that can have dependency, and so they can be differentiated before saying anything about their components, multiplied, and be present in expressions that in turn can be expanded, simplified and now also factorized. Physics:-Factor is useful as well with expressions that include differential operators, now treated within Physics as noncommutative variables (see the section on Operatorial algebraic expressions).

Examples

 

restart&semi; withPhysics&colon;Setupquantumoperators&equals;a&comma;b&comma;c&comma;d&comma;e&comma; mathematicalnotation &equals; true

mathematicalnotation=true&comma;quantumoperators=a&comma;b&comma;c&comma;d&comma;e

(73)

First example, because of using mathematical notation, noncommutative variables are displayed in different color (olive)

α2a2+α2ab+42λb2c+4λαbca+4λ2bcb+16λ2b c2+4αλabc+2αba+2b2

α2a2+2αab+42λb2c+4λαbca+42λbcb+16λ2bc2+4λαabc+2αba+2b2

(74)

Factor

4λbc+αa+2b2

(75)

A more involved example from a physics problem, illustrating that the factorization is also happening within the function's arguments, as well as that we can also correctly expand mathematical expressions involving noncommutative variables

PDEtools:-declarea&comma;b&comma;c&comma;gx&comma;y&colon;

ax&comma;ywill now be displayed asa

bx&comma;ywill now be displayed asb

cx&comma;ywill now be displayed asc

gx&comma;ywill now be displayed asg

(76)

Intc4Daggerbx&comma;y cx&comma;y &lambda;&plus;&alpha;ft ax&comma;yDaggerax&comma;y&plus;2gx&comma;ybx&comma;y2&comma;x&comma;y

4λbc+αftaa+2gb2&DifferentialD;x&DifferentialD;y

(77)

So first expand

expand

16λ2bcbc+4λαftbcaa+4λ2gbcb+4αftλaabc+α2ft2aaaa+αft2gaab+42gλbbc+2gαftbaa+2g2b2&DifferentialD;x&DifferentialD;y

(78)

Now retrieve the original expression by recursing over the arguments in order to factor the integrand

Factor

4λbc+αftaa+2gb2&DifferentialD;x&DifferentialD;y

(79)

This following one looks simpler but it is actually more complicated:

Commutatora&comma;bc

a,bc

(80)

expand

abcbac

(81)

The complication consists of the fact that the standard factor command, that assumes products are commutative, can never deal with an expression like a,b&equals;abba because if products were commutative the sum of these terms is equal to 0. Through algebraic manipulations, however, the expression is also factorable

Factor

abbac

(82)

This other one is yet more complicated:

abbaa&plus;&beta;b&plus;c2

abbaa+βb+c2

(83)

When you expand,

expand

aba+βab2+abc2ba2βbabbac2

(84)

there are various terms involving the same noncommutative operands, just multiplied in a different order. Generally speaking the limitation of this approach (in Maple 2016) consists of: "there cannot be more than 2 terms in the expanded form containing the same operands" . For instance in (84) the 1st and 4th terms have the same operands, that are actually also present in the 5th term but there you also have &beta; and for that reason (involving some additional manipulations) it can still be factorized:

Factor

abbaa+βb+c2

(85)

Recalling, in all these examples, the task is actually accomplished by the standard factor command, and the manipulations consist of ingeniously rewriting the given problem as one that involves only commutative variables, and from the factorization of that auxiliary expression extract the correct result for the given expression containing noncommutative variables.

 

Here is an example where the approach implemented does not work (in Maple 2016) because of the limitation mentioned in the previous paragraph:

Commutatora&comma;b&plus;c2

a,b+c2

(86)

expand

ababab2a+abcba2b+bababac+cabcba+c2

(87)

In this expression, the 1st, 2nd, 4th and 5th terms have the same operands a, b, a, b and then there are four terms containing the operands a, b, c. This type of expression is also factorable - work in progress.

As an example of the possibilities open with the combination of new functionality regarding operatorial algebraic expressions and factorization of algebraic expressions involving noncommutative objects, consider the factorization of Laplace equation in an Euclidean space

g_eu

Systems of spacetime Coordinates are: X=x1&comma;x2&comma;x3&comma;x4

Default differentiation variables for d_, D_ and dAlembertian are: X=x1&comma;x2&comma;x3&comma;x4

Changing the signature of the tensor spacetime to: + + + +

The Euclidean metric in coordinates x1&comma;x2&comma;x3&comma;x4

Setupspaceindices&equals;lowercaselatin&comma; coordinates&equals;cartesian

* Partial match of 'coordinates' against keyword 'coordinatesystems'

Default differentiation variables for d_, D_ and dAlembertian are: X=x&comma;y&comma;z&comma;t

Systems of spacetime Coordinates are: X=x&comma;y&comma;z&comma;t

coordinatesystems=X&comma;spaceindices=lowercaselatin

(88)

d_j2m2 &equals; 0

j2m2=0

(89)

Factor

jmj+m=0

(90)

Similar problem now with vectorial differential operators, split into time and space components,

withVectors

&x&comma;`+`&comma;`.`&comma;ChangeBasis&comma;ChangeCoordinates&comma;Component&comma;Curl&comma;DirectionalDiff&comma;Divergence&comma;Gradient&comma;Identify&comma;Laplacian&comma;&comma;Norm&comma;Setup&comma;diff

(91)

d_t2Nabla2&equals; 0

t22=0

(92)

Factor

tt+=0

(93)

d_t2d_j2 &equals; 0

t2j2=0

(94)

Factor

jtj+t=0

(95)

 

Tensors in Special and General Relativity

A number of relevant changes happened in the tensor routines of the Physics package, towards making the routines pack more functionality both for special and general relativity, as well as working more efficiently and naturally, based on Maple's Physics users' feedback collected during 2015.

New functionality

• 

Implement conversions to g_ from any of Ricci, Riemann, Einstein, etc. (all the general relativity tensors)

• 

New optional argument, 'freeindices = ...', in TensorArray and in TransformCoordinates, to indicate the ordering of free indices in tensorial expressions - say "A[alpha, beta] + A[beta, alpha]", where this ordering is not obvious, including now a new subroutine to determine this ordering in a predictable way and regardless of whether the indices are covariant or contravariant.

• 

Implement option 'specializeconstants' within Physics:-KillingVectors

Examples

Rewrite the general relativity tensors in terms of the metric (convert to g_)

Set the spacetime to something not flat, for instance Schwarzschild's solution

restart&semi; withPhysics&colon; g_sc

Systems of spacetime Coordinates are: X=r&comma;θ&comma;φ&comma;t

Default differentiation variables for d_, D_ and dAlembertian are: X=r&comma;θ&comma;φ&comma;t

The Schwarzschild metric in coordinates r&comma;θ&comma;φ&comma;t

Parameters: m

Riccimu&comma;nu

Rμ,ν

(96)

This is the standard definition of the Ricci tensor in terms of Christoffel symbols

&equals;convert&comma; Christoffel

Rμ,ν=αΓαμ,ναμ,ννΓαα,μαα,μ+Γβμ,νβμ,νΓαα,βαα,βΓβα,μβα,μΓαβ,ναβ,ν

(97)

When computing field equations, however, we need the expression of the Ricci tensor directly in terms of the metric

&equals;convert&comma; g_

Rμ,ν=αgα,κα,κνgκ,μ+μgκ,νκgμ,ν2+gα,κα,κανgκ,μ+αμgκ,νακgμ,ν2νgα,κα,κμgα,κ2gα,κα,κμνgα,κ2+gβ,λβ,λνgλ,μ+μgλ,νλgμ,νgα,κα,κβgα,κ4gβ,λβ,λμgα,λ+αgλ,μλgα,μgα,κα,κνgβ,κ+βgκ,νκgβ,ν4

(98)

This expression is obtained combining (97), with the definition of Christoffel in terms of the metric

Christoffelalpha&comma;mu&comma;nu

Γα,μ,ν

(99)

 &equals; convert&comma;g_

Γα,μ,ν=νgα,μ2+μgα,ν2αgμ,ν2

(100)

This formula is also available as the definition of Christoffel entering Christoffel[definition].

All the General Relativity tensors can now be expressed directly in terms of the metric in the same way:

Riemanndefinition

Rμ,ν,α,β=gμ,λαΓλν,βλν,ββΓλν,αλν,α+Γλκ,αλκ,αΓκν,βκν,βΓλκ,βλκ,βΓκν,ακν,α

(101)

lhs &equals; convertlhs&comma;g_

Rα,β,μ,ν=gα,λμgχ,λχ,λνgβ,χ+βgχ,νχgβ,ν2+gχ,λχ,λμνgβ,χ+βμgχ,νχμgβ,ν2νgλ,υλ,υμgβ,υ+βgμ,υυgβ,μ2gλ,υλ,υμνgβ,υ+βνgμ,υνυgβ,μ2+gλ,ψλ,ψμgκ,ψ+κgμ,ψψgκ,μgκ,τκ,τνgβ,τ+βgν,ττgβ,ν4gλ,ωλ,ωνgκ,ω+κgν,ωωgκ,νgκ,σκ,σμgβ,σ+βgμ,σσgβ,μ4

(102)

New option freeindices=..&period; of TransformCoordinates and TensorArray

• 

The new option, freeindices, to indicate the free indices in TransformCoordinates and TensorArray. Generally speaking, in a tensorial expression with more than one free index, there is no way to tell which free index comes first. The TransformCoordinates and TensorArray commands were using Maple's sort command, resulting in a deterministic, however non-obvious choice.
To address this situation, a new optional argument, to indicate the ordering of the free indices, say as in freeindices = [~a, b] was implemented. This also allows for transforming for instance only one or a restricted number of free indices when using TransformingCoordinates. When the option is not used, if the tensorial expression is a tensor itself, then the ordering found in its indices is used, otherwise, sort is used.

Consider for instance a three-dimensional problem in a Euclidean space

restart&semi; withPhysics&colon;

Setupcoordinates &equals; X &equals; x1&comma; x2&comma; x3&comma; dimension &equals; 3&comma; metric &equals; Euclidean&comma; spacetimeindices &equals; lowercaselatin&comma; quiet

coordinatesystems=X&comma;dimension=3&comma;metric=1&comma;1=1&comma;2&comma;2=1&comma;3&comma;3=1&comma;spacetimeindices=lowercaselatin

(103)

The metric:

g_

Define now two tensor with two indices, whose components are given by the following matrices:

Aa,b=213234121

Aa,b=213234121

(104)

Ba,b=236481551119

Ba,b=236481551119

(105)

Define&comma; 

Defined objects with tensor properties

Aa,b&comma;Ba,b&comma;γa&comma;σa&comma;Xa&comma;a&comma;ga,b&comma;δa,b&comma;εa,b,c

(106)

Since the space is Euclidean, the covariant and contravariant components are the same

A

Aa,b=213234121

(107)

A~

Aa,ba,b=213234121

(108)

Consider now the contracted product

expression  Ac,bBc,a

expressionAc,bBc,a

(109)

This expression has the free indices a and b, in no particular order. For example, consider a coordinate linear transformation (x - old coordinates, y - new coordinates)

tr  x1=y1+y2+y3&comma;x2=y2+y3&comma;x3=y3

trx1=y1+y2+y3&comma;x2=y2+y3&comma;x3=y3

(110)

Transform the coordinates, the third argument indicates the new variables, and call Ca,b the transformed tensor, with the ordering a&comma;b for the free indices

Ca,b=TransformCoordinatestr&comma;expression&comma;y1&comma;y2&comma;y3&comma; freeindices &equals; a&comma;b

Ca,b=17416850123202111273449

(111)

Change the order of the freeindices

Ca,b=TransformCoordinatestr&comma;expression&comma;y1&comma;y2&comma;y3&comma; freeindices &equals; b&comma;a

Ca,b=17501114112327368202449

(112)

Transform only one index, first a, then b, then in sequence

TransformCoordinatestr&comma;expression&comma;y1&comma;y2&comma;y3&comma; freeindices &equals; a

2A1,b+4A2,b+5A3,b5A1,b+12A2,b+16A3,b11A1,b+27A2,b+35A3,b

(113)

Ha &equals; TransformCoordinatestr&comma;expression&comma;y1&comma;y2&comma;y3&comma; freeindices &equals; b

Ha=2B1,a+2B2,a+B3,a3B1,a+5B2,a+3B3,a6B1,a+9B2,a+4B3,a

(114)

 

The same option is now available for TensorArray. Compute the tensor components of the tensorial expression (109) using the two possible orderings of its free indices

TensorArrayexpression&comma; freeindices&equals;a&comma;b

172427334952618997

(115)

TensorArrayexpression&comma; freeindices&equals;b&comma;a

173361244989275297

(116)

 

New option specializeconstants of KillingVectors

The design of KillingVectors was revised for Maple 2016 with regards to: a) return the Killing vectors using a vector format, not just the solution to the underlying PDE system, b) compute their contravariant components by default instead of covariant; c) introduce a new keyword specializeconstants to request the specialization of the constants that appear when solving the underlying linear PDE system.

restart&semi; withPhysics&colon;

Setupmathematicalnotation=true

mathematicalnotation=true

(117)

Set a system of Coordinates

Setupcoordinates=X

* Partial match of 'coordinates' against keyword 'coordinatesystems'

Default differentiation variables for d_, D_ and dAlembertian are: X=x1&comma;x2&comma;x3&comma;x4

Systems of spacetime Coordinates are: X=x1&comma;x2&comma;x3&comma;x4

coordinatesystems=X

(118)

Define a tensor with one index to represent the Killing vector

DefineV

Defined objects with tensor properties

V&comma;γμ&comma;σμ&comma;Xμ&comma;μ&comma;gμ,ν&comma;δμ,ν&comma;εα,β,μ,ν

(119)

The components of the contravariant Vμ, directly in list format, ready to be forwarded to Define to compute furthermore with them:

KillingVectorsV

Vμμ=x2&comma;x1&comma;0&comma;0&comma;Vμμ=0&comma;0&comma;1&comma;0&comma;Vμμ=x3&comma;0&comma;x1&comma;0&comma;Vμμ=x4&comma;0&comma;0&comma;x1&comma;Vμμ=1&comma;0&comma;0&comma;0&comma;Vμμ=0&comma;x4&comma;0&comma;x2&comma;Vμμ=0&comma;0&comma;x4&comma;x3&comma;Vμμ=0&comma;0&comma;0&comma;1&comma;Vμμ=0&comma;x3&comma;x2&comma;0&comma;Vμμ=0&comma;1&comma;0&comma;0

(120)

The same result but this time for the covariant components (for that purpose, pass V with a covariant index), and without specializing the integration constants,

KillingVectorsVμ&comma;specialize=false

* Partial match of 'specialize' against keyword 'specializeconstants'

Vμ=_C1x2+_C2x3+_C3x4+_C4&comma;_C1x1+_C5x3+_C6x4+_C7&comma;_C2x1_C5x2+_C8x4+_C9&comma;_C3x1_C6x2_C8x3+_C10

(121)

The new format for the output of KillingVectors facilitates computing with these results. For example, define V as a tensor using the first Killing vector solution in (120), check its contravariant and covariant components, and verify that it is indeed a Killing Vector by verifying the definition in terms of Lie derivatives.

Define (120)[1] as a tensor

1

Vμμ=x2&comma;x1&comma;0&comma;0

(122)

Define

Defined objects with tensor properties

γμ&comma;σμ&comma;Vμμ&comma;Xμ&comma;μ&comma;gμ,ν&comma;δμ,ν&comma;εα,β,μ,ν

(123)

Check the covariant and contravariant components of V

V

Vμ=x2x100

(124)

V~

Vμμ=x2x100

(125)

Verify that V is indeed a Killing Vector, that is, that the Lie derivative of the metric with respect to the V is 0

LieDerivativeVg_mu&comma;nu &equals; 0

gα,νμVαα+gμ,ανVαα=0

(126)

Compute the components of this tensorial equation

TensorArray

0=00=00=00=00=00=00=00=00=00=00=00=00=00=00=00=0

(127)

Improved functionality

• 

Install new approach for computing the Weyl scalars ~10x faster; fix issue noticed during development (missing clearing a cache) and add test with difficult example (Kerr metric) for the computation of Weyl scalars

• 

4x speedup in the computation of the Ricci scalars (testing example: the Kerr metric)

• 

5x speedup in the computation of the components of the Ricci tensor in the case of an arbitrary spacetime metric (10 unknown functions of 4 independent variables each).

Examples

restart&semi; withPhysics&colon;

Depending on the form of the spacetime metric, the computation of the Weyl and Ricci scalars, or the components of the Ricci tensor, can be rather involved, requiring handling large algebraic expressions depending on mathematical functions. Improving the approach for these kinds of difficult algebraic computations is one area of constant development.

Consider the Kerr solution in terms of Boyer and Lindquist coordinates, shown in Chapter 5 (equation 5.29) of the book "The large scale structure of space-time" by S. W. Hawking and G. F. R. Ellis; the corresponding line element

ds22mrr2a2cosθ2dt21r2+a2cosθ2+r2+a2cosθ2dr21a22mr+r2+r2+a2cosθ2d&theta;2+d&phi;sinθ2a2a22mr+r2cosθ2+2mr+r2a2+r4d&phi;4mradt1r2+a2cosθ2&colon;

Set the coordinates, and the metric using this line element all in one go

Setupcoordinates &equals; X=t&comma;r&comma;&theta;&comma;&phi;&comma; metric &equals; ds2

* Partial match of 'coordinates' against keyword 'coordinatesystems'

Detected `t`, the time variable, in position 1. Changing the signature of the spacetime metric accordingly, to: + - - -

Default differentiation variables for d_, D_ and dAlembertian are: X=t&comma;r&comma;θ&comma;φ

Systems of spacetime Coordinates are: X=t&comma;r&comma;θ&comma;φ

coordinatesystems=X&comma;metric=1&comma;1=2mrr2a2cosθ2r2+a2cosθ2&comma;1&comma;4=2sinθ2mrar2+a2cosθ2&comma;2&comma;2=r2+a2cosθ2a22mr+r2&comma;3&comma;3=r2+a2cosθ2&comma;4&comma;4=sinθ2a2a22mr+r2cosθ2+2mr+r2a2+r4r2+a2cosθ2

(128)

Check the metric

g_

The Weyl scalars for this metric are now computed 10x faster than in Maple 2015. Their definition in terms of the four vectors lμ, nμ, mμ, m&conjugate0;μ of the Newman-Penrose formalism

Weylscalarsdefinition

&psi;__0=Cμ,ν,α,βμ,ν,α,βlμmνlαmβ,&psi;__1=Cμ,ν,α,βμ,ν,α,βlμnνlαmβ,&psi;__2=Cμ,ν,α,βμ,ν,α,βlμmνm&conjugate0;αnβ,&psi;__3=Cμ,ν,α,βμ,ν,α,βlμnνm&conjugate0;αnβ,&psi;__4=Cμ,ν,α,βμ,ν,α,βnμm&conjugate0;νnαm&conjugate0;β

(129)

The five Weyl scalars defined above and the time to compute them

time&colon; Weylscalars&semi; time &equals; time%%&semi;

&psi;__0=3a2cosθ+1m2a2cosθ2+2r2sinθ2sinθcosθaa2cosθ23r22a2cosθ22r26cosθ+1r2+a2cosθ2a2cosθ2r23rcosθ1cosθ14a2cosθ22mr+r2sinθ2r2+a2cosθ24,&psi;__1=3I2acosθ+1acosθsinθa2cosθ23r22a2cosθ22r2+3sinθ2a2cosθ2r232a2cosθ2+2r2rmcosθ1a22mr+r22a2cosθ2+2r2r2+a2cosθ23a2cosθ22mr+r2sinθ2,&psi;__2=a2cosθ23a2+4mr2r2m2a2cosθ2+2r2sinθ2sinθcosθaa2cosθ23r22a2cosθ22r26cosθ+1r2+a2cosθ2a2cosθ2r23rcosθ14a2cosθ22mr+r2sinθ2r2+a2cosθ24,&psi;__3=3I2acosθ+1acosθsinθa2cosθ23r22a2cosθ22r2+3sinθ2a2cosθ2r232a2cosθ2+2r2rmcosθ1a22mr+r22a2cosθ2+2r2r2+a2cosθ23a2cosθ22mr+r2sinθ2,&psi;__4=3a2cosθ+1m2a2cosθ2+2r2sinθ2sinθcosθaa2cosθ23r22a2cosθ22r26cosθ+1r2+a2cosθ2a2cosθ2r23rcosθ1cosθ14a2cosθ22mr+r2sinθ2r2+a2cosθ24

time=3.823

(130)

Set now the metric to be entirely arbitrary

g_arbitrary

PDEtools:-declare

_F1t&comma;r&comma;θ&comma;φwill now be displayed as_F1

_F10t&comma;r&comma;θ&comma;φwill now be displayed as_F10

_F2t&comma;r&comma;θ&comma;φwill now be displayed as_F2

_F3t&comma;r&comma;θ&comma;φwill now be displayed as_F3

_F4t&comma;r&comma;θ&comma;φwill now be displayed as_F4

_F5t&comma;r&comma;θ&comma;φwill now be displayed as_F5

_F6t&comma;r&comma;θ&comma;φwill now be displayed as_F6

_F7t&comma;r&comma;θ&comma;φwill now be displayed as_F7

_F8t&comma;r&comma;θ&comma;φwill now be displayed as_F8

_F9t&comma;r&comma;θ&comma;φwill now be displayed as_F9

(131)

In Maple 2015, on a typical fast machine, the computation of the Ricci tensor components was taking around 1 minute. After an optimization of the code it now takes around 12 seconds (avoid displaying the components themselves to not clutter the display with too large expressions)

time&colon;  Ricci&colon; time &equals; time%%&semi;

time=5.225

(132)

The computational length of all the algebraic expressions entering these components is

lengthRicci

36613509

(133)

Vectors Package

A number of enhancements were performed in the Vectors subpackage:

• 

You can now represent the scalar product of a vector with itself by a squaring (power 2) of the vector.

• 

You can now add vectors of different bases and change basis in expressions that contain unit vectors of different orthonormal basis.

Examples

restart&semi; withPhysics&colon;withVectors&colon;

Consider the relativistic Hamiltonian of a particle of mass m; you can now enter the square of the momentum (scalar product of p with itself) directly as a power, as we do when computing with paper and pencil

H  p_2 c2&plus;m2 c412

Hp2c2+m2c4

(134)

The expansion of the power of a vector now returns the square of its norm

expandH

p2c2+m2c4

(135)

Introduce now the components of p

p_  p__x _i&plus;p__y _j&plus;p__3 _k&semi;

pp__xi+p__yj+p__3k

(136)

Now H, or its expanded form, are given by

H

p__xi+p__yj+p__3k2c2+m2c4

(137)

expandH

m2c4+c2p__32+c2p__x2+c2p__y2

(138)

Likewise, the expansion computed before entering the components of p now appears as

p__32+p__x2+p__y2c2+m2c4

(139)

Consider the following vectorial expression where the right-hand-side involves unit vectors and coordinates of both the cylindrical and spherical basis

CompactDisplayA_r&comma; theta&comma; phi

Ar&comma;θ&comma;φwill now be displayed asA

(140)

ee  CurlA_r&comma; &theta;&comma; &phi; &equals; _kr sin&theta; &rho;&plus;_thetasin&theta; r2cos&theta;_rr2 sin&theta;2&semi;

ee×A=krsinθρ+θsinθr2cosθrr2sinθ2

(141)

ee  CurlA_r&comma; θ&comma; φ &equals; _kr sinθ ρ&plus;_thetasinθ r

ee×A=krsinθρ+θrsinθ

(142)

Change all to the spherical basis, also the coordinates

ChangeBasisee&comma; spherical&comma; also

* Partial match of 'also' against keyword 'alsocomponents'

ChangeBasis×A&comma;3=cosθrr2sinθ2+1+rθsinθr2

(143)

The same operation to the cylindrical basis

ChangeBasisee&comma; cylindrical&comma; also

* Partial match of 'also' against keyword 'alsocomponents'

(144)

 

The Physics Library

Four new commands, useful for programming and interactive computation, have been added to the Physics:-Library package, that now includes 142 documented commands. These new ones are:

• 

ApplyProductsOfDifferentialOperators

• 

DelayEvaluationOfTensors

• 

PerformMatrixOperations

• 

ShowTypeDefinition

Additionally, eight new types, related to the developments in Physics for Maple 2016, were added to the Physics:-Library:-PhysicsType subpackage of Physics types, for programming or interactive purposes. These are

• 

DifferentialOperator, DifferentialOperatorIndexed, DifferentialOperatorSymbol, EuclideanIndex, ExtendedDifferentialOperator, ExtendedDifferentialOperatorIndexed, ExtendedDifferentialOperatorSymbol, TensorWithNumericalIndices

Redesigned Functionality and Miscellaneous

• 

Redesign of D_[mu] to not prematurely evaluate the argument.

• 

Reimplementing Physics:-Dgamma as a tensor with Array representation instead of an (old) matrix.

• 

d_[mu](x1) used to return g_[mu,~1], which generally speaking is correct, but in a curved spacetime this result is incorrect because d_[mu](x1) is not a tensor while g_[mu,1] is used as a tensor. For example, taking the covariant derivative of d_[mu](X[`~1`]) = g_[mu, `~1`] one would get zero on the right-hand side but not zero on the left-hand side. This is corrected so that d_[mu](x1) does not return g_[mu,~1] anymore when the spacetime is curved.

• 

Change default in KillingVectors: when the vector V is passed without indices, the equations for the contravariant V (not the covariant) are solved.

• 

Change in default of Physics:-KillingVectors: now it returns with all the integration constants specialized, unless a (new) optional keyword 'specializeconstants = false' is passed.

• 

Adjust design in Physics:-LieBrackets: when the related LieDerivative returns 0, LieBracket now returns an n-dimensional Array where n is the spacetime dimension and all of its components are equal to 0.

• 

LieBracket now automatically maps over "mappable' structures, like relations, lists, sets, Matrix, or Arrays.

• 

Change in design: avoid swapping the time variable from position 1 to position 4 when retrieving metrics from the database based on Stephani's book - instead reset the signature to be as in the book and keep the metric exactly as presented in the book.

• 

Implement simplification of gauge tensorial indices.

• 

Improve Physics:-Library:-Add to handle complicated examples.

• 

Allow integrating the 'integral form of Dirac' into a Dirac function when Physics is loaded.

See Also

Index of New Maple 2016 Features

Physics

Computer Algebra for Theoretical Physics

The Physics project

The Physics Updates

 


Download Help Document