ParallelTransportEquations - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : Mathematics : DifferentialGeometry : Tensor : ParallelTransportEquations

Tensor[ParallelTransportEquations] - calculate the parallel transport equations for a linear connection on the tangent bundle or a linear connection on a vector bundle

Calling Sequences

     ParallelTransportEquations(C, Y,  t)

Parameters

   C       - a list of functions of a single variable, defining the components of a curve on a manifold , with respect to a given coordinate system

   Y       - a vector field defined along the curve

          - a connection on the tangent bundle to a manifold  or a connection on a vector bundle 

   t       - the curve parameter

 

Description

Examples

See Also

Description

• 

Let  be a manifold and let  be a linear connection on the tangent bundle of  or a connection on a vector bundle . If  is a curve in  with tangent vector , then the parallel transport equations for a vector field  along  are the linear, first order ODEs defined by .

• 

The procedure ParallelTransportEquations(C, Y, , t) returns the vector .

• 

This command is part of the DifferentialGeometry:-Tensor package, and so can be used in the form ParallelTransportEquations(...) only after executing the command with(DifferentialGeometry) and with(Tensor) in that order. It can always be used in the long form DifferentialGeometry:-Tensor:-ParallelTransportEquations.

Examples

 

Example 1.

First create a 2-dimensional manifold  and define a connection on the tangent space of .

(2.1)
M > 

(2.2)

 

To define the parallel transport equations along , we first define a curve on  by specifying a list of functions of a single variable . We also define a vector field  with coefficients depending on the curve parameter.

M > 

(2.3)
M > 

(2.4)

 

The program ParallelTransportEquations returns a vector whose components define the parallel transport equations.

M > 

(2.5)

 

To solve these parallel transport equations use the DGinfo command in the Tools package to obtain the coefficients of  as a set. Pass the resulting system of 1st order ODEs to dsolve.

M > 

(2.6)
M > 

(2.7)

 

Back substitute the solution into the vector field .

M > 

(2.8)

 

Example 2.

First create a rank 2 vector bundle  over the two-dimensional manifold  and define a connection on .

M > 

E > 

(2.9)

Define a curve  in .

E > 

(2.10)
E > 

(2.11)

 

The program ParallelTransportEquations returns a vector whose components define the parallel transport equations.

E > 

(2.12)

 

To solve these parallel transport equations use DGinfo  to obtain the coefficients of as a set. Pass the result to dsolve.

E > 

(2.13)
E > 

(2.14)

 

Back substitute the solution into the vector field .

E > 

(2.15)

See Also

DifferentialGeometry, Tensor, Christoffel, Connection, CovariantDerivative, DGinfo, DirectionalCovariantDerivative


Download Help Document