Jacobi - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Query[Jacobi] - check if a list of structure equations defines a Lie algebra by verifying the Jacobi identities

Calling Sequences

     Query(Alg, "Jacobi")

     Query(Alg, parm, "Jacobi")

Parameters

     Alg     - (optional) the name of an initialized Lie algebra

     parm    - (optional) a set of parameters appearing in the structure equations of the Lie algebra g

 

Description

Examples

Description

• 

A bracket operation  on a vector space defines a Lie bracket if it is bi-linear, skew-symmetric, and satisfies the Jacobi identity                 

• 

In terms of the standard exterior derivative operator defined on the exterior algebra of the dual space (defined on 1-forms  by , the Jacobi identities are equivalent to the fundamental identity

• 

The program DGsetup does not check that its input, a Lie algebra data structure, actually defines a Lie algebra. To verify that a Lie algebra data structure does indeed define a Lie algebra, initialize the Lie algebra data structure, and run Query("Jacobi").

• 

Query(Alg, "Jacobi") returns true if the Jacobi identities hold (in which case Alg defines a Lie algebra) and false otherwise.  If the algebra is unspecified, then Query is applied to the current algebra. The Jacobi identity is checked using the exterior derivative formulation.

• 

Query(Alg, parm, "Jacobi") returns a sequence TF, Eq, Soln, AlgList. Here TF is true if Maple finds parameter values for which the Jacobi identities are valid and false otherwise; Eq is the set of equations (with the variables parm as unknowns) which must be satisfied for the Jacobi identities to hold; Soln is the list of solutions to the equations Eq; and AlgList is the list of Lie algebra data structures obtained from the parameter values given by various solutions in Soln.

• 

The command Query is part of the DifferentialGeometry:-LieAlgebras package. It can be used in the form Query(...) only after executing the commands with(DifferentialGeometry) and with(LieAlgebras), but can always be used by executing DifferentialGeometry:-LieAlgebras:-Query(...).

Examples

 

Example 1.

We begin by defining a bracket operation on a 3-dimensional vector space with basis This bracket depends upon two parameters  and . We shall determine for which parameter values this bracket satisfies the Jacobi identities.

 

Convert to a Lie algebra data structure.

(2.1)

 

Initialize this data structure.

(2.2)
Alg1 > 

(2.3)

 

The equations that must be satisfied for the bracket to satisfy Jacobi are:

Alg1 > 

(2.4)

 

This leads to two cases  or .  We initialize the resulting Lie algebra data structures and print the multiplication tables.

Alg1 > 

Alg1_2 > 

(2.5)

 

Example 2

The Jacobi identities are equivalent to the vanishing of the square of the exterior derivative.  For example:

Alg1_2 > 

Alg1 > 

(2.6)
Alg1 > 

(2.7)
Alg1 > 

(2.8)

See Also

DifferentialGeometry

LieAlgebras

ExteriorDerivative

LieBracket

Query

 


Download Help Document