ReductivePair - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Query[ReductivePair] - check if a subalgebra, subspace pair defines a reductive pair in a Lie algebra

Calling Sequences

     Query(S, M, "ReductivePair")

     Query(S, M, parm, "ReductivePair")

Parameters

     S       - a list of independent vectors which defines a subalgebra in a Lie algebra g

     M       - a list of independent vectors which defines a complementary subspace to S in g

     parm    - (optional) a set of parameters appearing in the list of vectors S

 

Description 

Examples

Description 

• 

Let be a Lie algebra, a subalgebra and a subspace. Then the subalgebra, subspace pair is called a reductive pair if [i] (vector space direct sum) and [ii]  for all and y in . The subspace is called a reductive complement for the subalgebra .

• 

Query(S, M, "ReductivePair") returns true if the subspace M defines a reductive complement to the subalgebra S.

• 

Query(S, M, parm, "ReductivePair") returns a sequence TF, Eq, Soln, reductiveList. Here TF is true if Maple finds parameter values for which M is a reductive complement and false otherwise; Eq is the set of equations (with the variables parm as unknowns) which must be satisfied for M to be a reductive complement; Soln is the list of solutions to the equations Eq; and reductiveList is the list of reductive subspaces obtained from the parameter values given by the different solutions in Soln.

• 

The command Query is part of the DifferentialGeometry:-LieAlgebras package. It can be used in the form Query(...) only after executing the commands with(DifferentialGeometry) and with(LieAlgebras), but can always be used by executing DifferentialGeometry:-LieAlgebras:-Query(...).

Examples

 

Example 1.

First initialize a Lie algebra.

(2.1)

 

We see that span is not a reductive complement for span but span is a reductive complement for span

Alg > 

Alg > 

(2.2)
Alg > 

Alg > 

(2.3)

 

Now we look for the most general reductive complement  for the subalgebra span .

Alg > 

Alg > 

(2.4)

 

The only possibility is span.

Alg > 

(2.5)

 

Note that the ComplementaryBasis command can be used to generate the most general complementary subspace. This helps to calculate reductive complements for subalgebras.

Alg > 

Alg > 

(2.6)
Alg > 

(2.7)

See Also

DifferentialGeometry

LieAlgebras

ComplementaryBasis

Query

 


Download Help Document