DifferentialGeometry/Tensor/NPSpinCoefficients - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

Home : Support : Online Help : DifferentialGeometry/Tensor/NPSpinCoefficients

Tensor[NPSpinCoefficients] - find the Newman-Penrose spin coefficients

Calling Sequences

     NPSpinCoefficients(NTetrad, output)

     NPSpinCoefficients(Fr, output)

Parameters

   NTetrad - a list of 4 vectors defining a null tetrad

   Fr      - the name of an initialized anholonomic frame, created from a null tetrad

   output  - (optional) keyword argument output = "sequence"

 

Description

Examples

See Also

Description

• 

Let  be a metric with signature  and ) a null tetrad for . The Newman-Penrose spin coefficients are the connection coefficients defined by the null tetrad. They are thus certain complex linear combinations of the Christoffel connection coefficients. The NP spin coefficients provide for a very compact and efficient formalism for connection and curvature computations in general relativity. See Newman and Penrose, Stewart.

• 

The NPSpinCoefficients command returns a table with 12 entries "kappa", "rho", "sigma", "tau", "pi", "lambda", "mu", "nu", "alpha ", "beta ", " gamma ", "epsilon". These are the customary labels assigned to the spin coefficients. With the optional keyword argument output = "sequence", the spin coefficients are returned as a sequence of 12 Maple expressions.

• 

Here are the formulas that are used to compute the NP spin coefficients. Let  be the basis of 1-forms dual to the given null tetrad ). With respect to this basis, the metric  becomes

  

whereis the symmetric tensor product. Let  be the directional covariant derivative operator (in the direction of a vector ) defined by the Christoffel connection for the metric . If  is a 1-form, then  is a 1-form which can be evaluated on a vector  to give the scalar .  In terms of this notation, the spin coefficients are:

 k =

    

• 

This command is part of the DifferentialGeometry:-Tensor package, and so can be used in the form NPSpinCoefficients(...) only after executing the commands with(DifferentialGeometry); with(Tensor); in that order.  It can always be used in the long form DifferentialGeometry:-Tensor:-NPSpinCoefficients.

Examples

 

Example 1.

Define a manifold  with coordinates .

(2.1)

 

Define a metric .

S > 

(2.2)

 

Define an orthonormal tetrad OTetrad for the metric .  Use GRQuery to check that OTetrad is indeed an orthonormal tetrad.

S > 

(2.3)
S > 

(2.4)

 

Construct a null tetrad NTetrad from the orthonormal tetrad OTetrad.

S > 

(2.5)

 

Calculate the NP spin coefficients defined by the null tetrad NTetrad.

S > 

(2.6)

 

The individual spin coefficients can be extracted from the table SpinCoeff.

S > 

(2.7)

 

Example 2.

With the keyword argument output = "sequence", the command NPSpinCoefficients will return the spin coefficients as a sequence.  (Note that gamma is protected by Maple.)

S > 

(2.8)

 

Example 3.

We check the results from Example 2 against the definitions of the spin-coefficients.  First define the null tetrad.

S > 

(2.9)

 

Define the dual basis.

S > 

(2.10)

 

Calculate the Christoffel connection.

S > 

(2.11)

 

1. k =

S > 

(2.12)

 

2.

S > 

(2.13)

 

3.

S > 

(2.14)

 

4.

S > 

(2.15)

 

5.

S > 

(2.16)

 

6.

S > 

(2.17)

 

7.

S > 

(2.18)

 

8.

S > 

(2.19)

 

9.

S > 

(2.20)

 

10.

S > 

(2.21)

 

11.

S > 

(2.22)

 

12.

S > 

(2.23)

 

Example 4

When working with the NP formalism, it is usually advantageous to work with the anholonomic frame defined by the null tetrad.  To create anholonomic frames in DifferentialGeometry, see FrameData.

S > 

(2.24)
S > 

(2.25)

 

We can now calculate the spin coefficients for the null tetrad with the second calling sequence.

NP > 

(2.26)

See Also

DifferentialGeometry, Tensor, Christoffel, CovariantDerivative, DirectionalCovariantDerivative, DualBasis, FrameData, GRQuery, NullTetrad


Download Help Document