FractionFreeRightEuclidean - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


OreTools[Modular]

  

FractionFreeRightEucliean

  

perform a fraction-free version of right Euclidean algorithm (usual, half-extended, and extended) modulo a prime

  

RightEuclidean

  

perform right Euclidean algorithm (usual, half-extended, and extended)

 

Calling Sequence

Parameters

Description

Examples

References

Calling Sequence

Modular[FractionFreeRightEuclidean](Poly1, Poly2, p, A, 'c1', 'c2')

Modular[RightEuclidean](Poly1, Poly2, p, A, 'c1', 'c2')

Parameters

Poly1, Poly2

-

nonzero Ore polynomials; to define an Ore polynomial, use the OrePoly structure

p

-

prime

A

-

Ore algebra; to define an Ore algebra, use the SetOreRing command

'c1', 'c2'

-

(optional) unevaluated names

Description

• 

Modular[FractionFreeRightEuclidean](Poly1, Poly2, p, A, 'c1', 'c2') calling sequence returns a list [m, S] where m is a positive integer and S is an array with m elements storing the subresultant sequence of the first kind of Poly1 and Poly2.

  

The Modular[FractionFreeRightEuclidean] command requires that Poly1 and Poly2 be fraction-free, and that the commutation rule of the Ore algebra A also be fraction-free.

• 

If the optional fourth argument to the FractionFreeRightEuclidean command c1 is specified, it is assigned the first co-sequence of Poly1 and Poly2 so that:

  

and c1[m+1] Poly2 is a least common left multiple (LCLM) of Poly1 and Poly2.

• 

If the optional fifth argument to the FractionFreeRightEuclidean command c2 is specified, it is assigned the second co-sequence of Poly1 and Poly2 so that:

  

and c1[m+1] Poly2 = - c2[m+1] Poly1 mod p is an LCLM of Poly1 and Poly2.

• 

Modular[RightEuclidean](Poly1, Poly2, p, A, 'c1', 'c2') calling sequence returns a list [m, S] where m is a positive integer and S is an array with m elements storing the right Euclidean polynomial remainder sequence of Poly1 and Poly2.

• 

If the optional fourth argument to the FractionFreeRightEuclidean command c1 is specified, it is assigned the first co-sequence of Poly1 and Poly2 so that:

  

and c1[m+1] Poly2 is a least common left multiple (LCLM) of Poly1 and Poly2.

• 

If the optional fifth argument to the Modular[RightEuclidean] command c2 is specified, it is assigned the second co-sequence of Poly1 and Poly2 so that:

  

and c1[m+1] Poly2 = - c2[m+1] Poly1 mod p is an LCLM of Poly1 and Poly2.

Examples

(1)

(2)

(3)

(4)

(5)

(6)

Check the co-sequences.

(7)

Check the LCLM.

(8)

Try fraction-free right Euclidean algorithm.

(9)

(10)

(11)

(12)

(13)

(14)

Check the co-sequences.

(15)

Check the LCLM.

(16)

References

  

Li, Z. "A subresultant theory for Ore polynomials with applications." Proc. of ISSAC'98, pp.132-139. Edited by O. Gloor. ACM Press, 1998.

See Also

OreTools

OreTools/Divisions

OreTools/Modular

OreTools/OreAlgebra

OreTools/OrePoly

OreTools[SetOreRing]

 


Download Help Document