DifferentialGeometry/Tensor/NullTetrad - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

Home : Support : Online Help : DifferentialGeometry/Tensor/NullTetrad

Tensor[NullTetrad] - construct a null tetrad from an orthonormal tetrad or from a solder form and a spinor basis

Tensor[OrthonormalTetrad] - construct an orthonormal tetrad from a null tetrad

Calling Sequences

     NullTetrad(OrthTetrad)

     NullTetrad(SpinBasis)

     OrthonormalTetrad(NullTetrad)

Parameters

   OrthTetrad   - a list of 4 vectors defining an orthonormal tetrad with respect to a metric g with signature

               - a solder form with index type ["con", " cov", "cov"]

   SpinBasis    - a list of 2 rank 1 spinors, with spinor inner product = 1

   NullTetrad   - a list of 4 vectors defining a null tetrad with respect to a Lorentzian metric  with signature  

 

Description

Examples

See Also

Description

• 

Let  be a metric on a 4-dimensional manifold with signature . A list of 4 vectors  defines an orthonormal tetrad if

 

 

and all other inner products vanish. A list of 4 vectors  defines a null tetrad if  and  are real,  is the complex conjugate of ,

 

,   

 

and all other inner products vanish. In particular, the vectors  are all null vectors.

• 

Given an orthonormal tetrad OrthTetrad = , the command NullTetrad(OrthTetrad) constructs the null tetrad given by

 

  .

 

• 

Let sigma be a solder form (index type ["con", " cov", "cov"]), with components for the metric . Let and  be rank 1, unprimed spinors with . Let  and  be their conjugates (see ConjugateSpinor).  Then the following vectors

 

  

 

 define a null tetrad. This null tetrad is computed with the second calling sequence NullTetrad(sigma, [, ]).

• 

Given a null tetrad NullTetrad =, the command OrthonormalTetrad(NullTetrad) constructs the orthonormal tetrad defined by

 

 

 

• 

The command DGGramSchmidt can also be used to construct an orthonormal tetrad.

• 

The command GRQuery can be used to check that a given tetrad is a null tetrad or an orthonormal tetrad.

• 

These commands are part of the DifferentialGeometry:-Tensor package, and so can be used in the form NullTetrad(...) or OrthonormalTetrad(...) only after executing the commands with(DifferentialGeometry); with(Tensor) in that order. They can always be used in the long form DifferentialGeometry:-Tensor:-NullTetrad or DifferentialGeometry:-Tensor:-OrthonormalTetrad.

Examples

 

Example 1.

First create manifold  with coordinates .

(2.1)

 

Define a spacetime metric  on  with signature .

M > 

(2.2)

 

Define an orthonormal tetrad F on  with respect to the metric . Verify using the command GRQuery.

M > 

(2.3)
M > 

(2.4)

 

Use the orthonormal tetrad F to construct a null tetrad NT.

M > 

(2.5)

 

Verify this result using the command GRQuery.

M > 

(2.6)

 

It is a simple matter to check directly, using the TensorInnerProduct command, that NT is a null tetrad,

M > 

 

Example 2.

We use spinors to create a null tetrad. First create a vector bundle  with base coordinates  and fiber coordinates .

(2.7)

 

Define a spacetime metric  on  with signature .

E > 

(2.8)

 

Define an orthonormal frame  on  with respect to the metric .

E > 

(2.9)

 

Compute the solder form  defined by the orthonormal frame .

E > 

(2.10)

 

Define a pair of rank 1 spinors  and . Check that their spinor inner product is 1. Construct the corresponding null tetrad, .

E > 

(2.11)
E > 

(2.12)
E > 

(2.13)
E > 

(2.14)
E > 

 

Example 3.

Convert the null tetrad  constructed in Example 2 to an orthonormal tetrad .

E > 

(2.15)

 

Check the result.

E > 

See Also

DifferentialGeometry, Tensor, ConjugateSpinor, DGGramSchmidt, GRQuery, SolderForm, SpinorInnerProduct, TensorInnerProduct


Download Help Document