RootSpace - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


LieAlgebras[RootSpace] - find a root space for a semi-simple Lie algebra from a Cartan subalgebra or a root space decomposition

Calling Sequences

     RootSpace(RV, CSA)

     RootSpace(RV, RSD)

Parameters

     RV    - a column vector

     CSA   - a list of vectors in a semi-simple Lie algebra, defining a Cartan subalgebra

     RSD   - a table, defining a root space decomposition of a semi-simple Lie algebra

     

 

Description

Examples

Description

• 

Let g be a Lie algebra and h a Cartan subalgebra. Let be a basis for . A root for g with respect to this basis is a non-zero -tuple of complex numbers such that    (*) for some .

• 

The set of which satisfy (*) is called the root space of g defined by and denoted by A basic theorem in the structure theorem of semi-simple Lie algebras asserts that the root spaces are 1-dimensional.

• 

The first call sequence calculates the root space for a given root. If is not a root, then the zero vector (in ) is returned.

• 

The second calling sequence simply returns the table entry in the table of root spaces corresponding to the root .

Examples

 

Example 1.

Use the command SimpleLieAlgebraData to obtain the Lie algebra data for the simple Lie algebra This is the 15-dimensional Lie algebra of trace-free, skew-Hermitian matrices.

(2.1)

 

Initialize the Lie algebra

(2.2)

 

The command StandardRepresentation will produce the actual matrices defining . (This command only applies to Lie algebras constructed by the SimpleLieAlgebraData  procedure.)

su4 > 

 

The Lie algebra elements corresponding to the complex diagonal matrices define a Cartan subalgebra.

su4 > 

(2.3)

 

We check this is indeed a Cartan subalgebra using the Query command

su4 > 

(2.4)

 

 

Here is the root space corresponding to the root <I, I, -I>.

su4 > 

(2.5)

 

We check that the X is an eigenvector for the elements of the Cartan subalgebra.

su4 > 

(2.6)
su4 > 

(2.7)

 

The column vector <I, I, I> is not a root

su4 > 

(2.8)

 

Example 2.

Here is the full root space decomposition for the Lie algebra from Example 1.

su4 > 

(2.9)

 

The second calling sequence for RootSpace simply converts the given root vector to a list and extracts the corresponding root space from the root space decomposition table.

su4 > 

(2.10)

See Also

DifferentialGeometry

CartanSubalgebra

GetComponents

Query

RootSpaceDecomposition

SimpleLieAlgebraData

SimpleLieAlgebraProperties

StandardRepresentation

 


Download Help Document