RegularChains[ChainTools]
EquiprojectableDecomposition
equiprojectable decomposition of a variety
Calling Sequence
Parameters
Description
Examples
References
EquiprojectableDecomposition(lrc, R)
lrc
-
list of regular chains of R
R
polynomial ring
The command EquiprojectableDecomposition(lrc, R) returns the equiprojectable decomposition of the variety given by lrc.
The variety encoded by lrc is the union of the regular zero sets of the regular chains of lrc.
It is assumed that every regular chain in lrc is zero-dimensional and strongly normalized.
This command is part of the RegularChains[ChainTools] package, so it can be used in the form EquiprojectableDecomposition(..) only after executing the command with(RegularChains[ChainTools]). However, it can always be accessed through the long form of the command by using RegularChains[ChainTools][EquiprojectableDecomposition](..).
withRegularChains:
withChainTools:
R≔PolynomialRingz,y,x
R≔polynomial_ring
sys≔x2+y+z−1,x+y2+z−1,x+y+z2−1
sys≔x2+y+z−1,y2+x+z−1,z2+x+y−1
lrc≔Triangularizesys,R,normalized=yes
lrc≔regular_chain,regular_chain,regular_chain,regular_chain
mapEquations,lrc,R
z−x,y−x,x2+2x−1,z,y,x−1,z,y−1,x,z−1,y,x
ed≔EquiprojectableDecompositionlrc,R
ed≔regular_chain,regular_chain
mapEquations,ed,R
z+y−1,y2−y,x,2z+x2−1,2y+x2−1,x3+x2−3x+1
Dahan, X.; Moreno Maza, M.; Schost, E.; Wu, W. and Xie, Y. "Equiprojectable decompositions of zero-dimensional varieties" In proc. of International Conference on Polynomial System Solving, University of Paris 6, France, 2004.
See Also
Equations
MatrixCombine
PolynomialRing
RegularChains
Triangularize
Download Help Document