tensor(deprecated)/permute_indices - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

Home : Support : Online Help : tensor(deprecated)/permute_indices

tensor

  

permute_indices

  

Permutation of the indices of a tensor_type

 

Calling Sequence

Parameters

Description

Examples

Calling Sequence

permute_indices(T, permutation)

Parameters

T

-

tensor_type on which to perform permutation

permutation

-

permutation according to which the re-indexing of the indices is to be done

Description

Important: The tensor package has been deprecated. Use the superseding command DifferentialGeometry[Tensor][RearrangeIndices].

• 

This procedure allows you to change the way a given tensor_type is indexed.  Given any permutation of the indices of a tensor_type and a tensor, the routine will re-index the tensor according to the given permutation.

• 

T must be of rank 2 or more.

• 

permutation is a list of indices (integers ranging from 1 to rank(T)) with no duplications and size equal to the rank of T.  It is used to specify the re-indexing of the tensor in the following way: The `nth' index of the original tensor is moved to the position of `n' in the permutation.  For example, a permutation list of 3,1,2 specifies that the third index of the original tensor will be the first index of the re-indexed tensor, the first index of the original tensor will be the second index of the re-indexed tensor, and the second index of the original tensor will be the third index of the re-indexed tensor (that is,  i,j,k --> k,i,j).

• 

This function is occasionally useful because of the rigidity in default indexing of the other utility routines, like prod, contract, and cov_diff, of the tensor package.  Since you can have a preferred indexing different from the default, and switching back and forth between the two conventions could be confusing during a substantial computation, it is advised that you perform a re-ordering of indices of any computed tensor_type to comply with your indexing convention, whenever the default indexing is different from the one with which you are comfortable.

• 

Note that any symmetrical properties of the indices of the input are not preserved in the re-indexed indices of the result.

• 

This function is part of the tensor package, and so can be used in the form permute_indices(..) only after performing the command with(tensor) or with(tensor, permute_indices).  The function can always be accessed in the long form tensor[permute_indices](..).

Examples

Important: The tensor package has been deprecated. Use the superseding command DifferentialGeometry[Tensor][RearrangeIndices].

withtensor:

Find the transpose of a rank 2 tensor.

A_comptsarray1..3,1..3:

forito3doforjto3doA_comptsi,jcata,i,jenddoenddo:Acreate1,1,opA_compts

Atableindex_char=1,−1,compts=a11a12a13a21a22a23a31a32a33

(1)

A_transposepermute_indicesA,2,1

A_transposetableindex_char=−1,1,compts=a11a21a31a12a22a32a13a23a33

(2)

Perform a cyclic permutation on a rank 3 tensor.

B_comptsarray1..3,1..3,1..3:

forito3doforjto3doforkto3doB_comptsi,j,kcatb,i,j,kenddoenddoenddo:Bcreate1,1,1,opB_compts

Btableindex_char=1,−1,1,compts=array1..3,1..3,1..3,1,1,1=b111,1,1,2=b112,1,1,3=b113,1,2,1=b121,1,2,2=b122,1,2,3=b123,1,3,1=b131,1,3,2=b132,1,3,3=b133,2,1,1=b211,2,1,2=b212,2,1,3=b213,2,2,1=b221,2,2,2=b222,2,2,3=b223,2,3,1=b231,2,3,2=b232,2,3,3=b233,3,1,1=b311,3,1,2=b312,3,1,3=b313,3,2,1=b321,3,2,2=b322,3,2,3=b323,3,3,1=b331,3,3,2=b332,3,3,3=b333

(3)

Cpermute_indicesB,3,1,2

Ctableindex_char=1,1,−1,compts=array1..3,1..3,1..3,1,1,1=b111,1,1,2=b121,1,1,3=b131,1,2,1=b211,1,2,2=b221,1,2,3=b231,1,3,1=b311,1,3,2=b321,1,3,3=b331,2,1,1=b112,2,1,2=b122,2,1,3=b132,2,2,1=b212,2,2,2=b222,2,2,3=b232,2,3,1=b312,2,3,2=b322,2,3,3=b332,3,1,1=b113,3,1,2=b123,3,1,3=b133,3,2,1=b213,3,2,2=b223,3,2,3=b233,3,3,1=b313,3,3,2=b323,3,3,3=b333

(4)

See Also

DifferentialGeometry[Tensor][RearrangeIndices]

tensor(deprecated)

tensor(deprecated)/cov_diff

tensor(deprecated)[contract]

tensor(deprecated)[prod]

 


Download Help Document